Improper distribution of chromosomes during mitosis can contribute to malignant transformation. Higher eukaryotes have evolved a mitotic catastrophe mechanism for eliminating mitosis-incompetent cells; however, the signaling cascade and its epigenetic regulation are poorly understood. Our analyses of human cancerous tissue revealed that the NAD-dependent deacetylase SIRT2 is up-regulated in early-stage carcinomas of various organs. Mass spectrometry analysis revealed that SIRT2 interacts with and deacetylates the structural maintenance of chromosomes protein 1 (SMC1A), which then promotes SMC1A phosphorylation to properly drive mitosis. We have further demonstrated that inhibition of SIRT2 activity or continuously increasing SMC1A-K579 acetylation causes abnormal chromosome segregation, which, in turn, induces mitotic catastrophe in cancer cells and enhances their vulnerability to chemotherapeutic agents. These findings suggest that regulation of the SIRT2-SMC1A axis through deacetylation-phosphorylation permits escape from mitotic catastrophe, thus allowing early precursor lesions to overcome oncogenic stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.