ObjectiveLimiting purine intake, inhibiting xanthine oxidoreductase (XOR) and inhibiting urate reabsorption in proximal tubule by uricosuric drugs, to reduce serum uric acid (UA) levels, are recognized treatments for gout. However, the mechanism of increased how XOR expression and activity in hyperuricemia and gout remains unclear. This study aims to explore whether exogenous purines are responsible for increased XOR expression and activity.MethodsHepG2 and Bel-7402 human hepatoma cells were stimulated with exogenous purine, or were exposed to conditioned growth medium of purine-stimulated Jurkat cells, followed by measurement of XOR expression and UA production to determine the effect of lymphocyte-secreted cytokines on XOR expression in hepatocytes. The expression of STAT1, IRF1 and CBP and their binding on the XDH promoter were detected by western blotting and ChIP-qPCR. The level of DNA methylation was determined by bisulfite sequencing PCR. Blood samples from 117 hyperuricemia patients and 119 healthy individuals were collected to analyze the correlation between purine, UA and IFN-γ concentrations.ResultsExcess of purine was metabolized to UA in hepatocyte metabolism by XOR that was induced by IFN-γ secreted in the conditioned growth medium of Jurkat cells in response to exogenous purine, but it did not directly induce XOR expression. IFN-γ upregulated XOR expression due to the enhanced binding of STAT1 to IRF1 to further recruit CBP to the XDH promoter. Clinical data showed positive correlation of serum IFN‐γ with both purine and UA, and associated risk of hyperuricemia.ConclusionPurine not only acts as a metabolic substrate of XOR for UA production, but it induces inflammation through IFN-γ secretion that stimulates UA production through elevation of XOR expression.
Background: High expression of inhibitor of DNA binding 1 (ID1) correlates with poor prognosis in colorectal cancer (CRC). Aberrant enhancer activation in regulating ID1 transcription is limited. Methods: Immunohistochemistry (IHC), quantitative RT-PCR (RT-qPCR) and Western blotting (WB) were used to determine the expression of ID1. CRISPR-Cas9 was used to generate ID1 or enhancer E1 knockout cell lines. Dual-luciferase reporter assay, chromosome conformation capture assay and ChIP-qPCR were used to determine the active enhancers of ID1. Cell Counting Kit 8, colony-forming, transwell assays and tumorigenicity in nude mice were used to investigate the biological functions of ID1 and enhancer E1. Results: Human CRC tissues and cell lines expressed a higher level of ID1 than normal controls. ID1 promoted CRC cell proliferation and colony formation. Enhancer E1 actively regulated ID1 promoter activity. Signal transducer and activator of transcription 3 (STAT3) bound to ID1 promoter and enhancer E1 to regulate their activity. The inhibitor of STAT3 Stattic attenuated ID1 promoter and enhancer E1 activity and the expression of ID1. Enhancer E1 knockout down-regulated ID1 expression level and cell proliferation in vitro and in vivo. Conclusions: Enhancer E1 is positively regulated by STAT3 and contributes to the regulation of ID1 to promote CRC cell progression and might be a potential target for anti-CRC drug studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.