Protein tyrosine phosphatase 1B (PTP1B) is an enzyme that downregulates the insulin receptor. Inhibition of PTP1B is expected to improve insulin action, and the design of small molecule PTP1B inhibitors to treat type II diabetes has received considerable attention. In this work, NMR-based screening identified a nonselective competitive inhibitor of PTP1B. A second site ligand was also identified by NMR-based screening and then linked to the catalytic site ligand by rational design. X-ray data confirmed that the inhibitor bound with the catalytic site in the native, "open" conformation. The final compound displayed excellent potency and good selectivity over many other phosphatases. The modular approach to drug design described in this work should be applicable for the design of potent and selective inhibitors of other therapeutically relevant protein tyrosine phosphatases.
The c-Jun N-terminal kinases (JNK-1, -2, and -3) are members of the mitogen activated protein (MAP) kinase family of enzymes. They are activated in response to certain cytokines, as well as by cellular stresses including chemotoxins, peroxides, and irradiation. They have been implicated in the pathology of a variety of different diseases with an inflammatory component including asthma, stroke, Alzheimer's disease, and type 2 diabetes mellitus. In this work, high-throughput screening identified a JNK inhibitor with an excellent kinase selectivity profile. Using X-ray crystallography and biochemical screening to guide our lead optimization, we prepared compounds with inhibitory potencies in the low-double-digit nanomolar range, activity in whole cells, and pharmacokinetics suitable for in vivo use. The new compounds were over 1,000-fold selective for JNK-1 and -2 over other MAP kinases including ERK2, p38alpha, and p38delta and showed little inhibitory activity against a panel of 74 kinases.
Using an NMR-based fragment screening and X-ray crystal structure-based assembly, starting with millimolar ligands for both the catalytic site and the second phosphotyrosine binding site, we have identified a small-molecule inhibitor of protein tyrosine phosphatase 1B with low micromolar inhibition constant, high selectivity (30-fold) over the highly homologous T-cell protein tyrosine phosphatase, and good cellular activity in COS-7 cells.
Protein tyrosine phosphatase (PTPase) 1B (PTP1B) has been implicated as a key negative regulator of both insulin and leptin signaling cascades. We identified several salicylic acid-based ligands for the second phosphotyrosine binding site of PTP1B using a NMR-based screening. Structure-based linking with a catalytic site-directed oxalylarylaminobenzoic acid-based pharmacophore led to the identification of a novel series of potent PTP1B inhibitors exhibiting 6-fold selectivity over the highly homologous T-cell PTPase (TCPTP) and high selectivity over other phosphatases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.