An electrically modulated single‐/dual‐color imaging photodetector with fast response speed is developed based on a small molecule (COi8DFIC)/perovskite (CH3NH3PbBr3) hybrid film. Owing to the type‐I heterojunction, the device can facilely transform dual‐color images to single‐color images by applying a small bias voltage. The photodetector exhibits two distinct cut‐off wavelengths at ≈544 nm (visible region) and ≈920 nm (near‐infrared region), respectively, without any power supply. Its two peak responsivities are 0.16 A W−1 at ≈525 nm and 0.041 A W−1 at ≈860 nm with a fast response speed (≈102 ns). Under 0.6 V bias, the photodetector can operate in a single‐color mode with a peak responsivity of 0.09 A W−1 at ≈475 nm, showing a fast response speed (≈102 ns). A physical model based on band energy theory is developed to illustrate the origin of the tunable single‐/dual‐color photodetection. This work will stimulate new approaches for developing solution‐processed multifunctional photodetectors for imaging photodetection in complex circumstances.
A new successive surface engineering method via a dual modification of TiO2 compact layer by PC61BM and C60-ETA was developed, affording dramatic efficiency enhancement with suppressed-hysteresis current–voltage response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.