Helper threaded prefetching based on Chip Multiprocessor is a well known approach to reducing memory latency and has been explored in linked data structures accesses. However, conventional helper threaded prefetching often suffers from useless prefetches and cache thrashing, which affect its effectiveness. In this paper, we first analyzed the shortcomings of conventional helper threaded prefetching for linked data structures. Then we proposed an improved helper threaded prefetching, Skip Helper Threaded Prefetching, for hotspots with two level data traversals. Our solution is to profile the applications and balance delinquent loads between main thread and prefetching thread based on the characteristic of operations in their hotspots. Evaluations show that the proposed solution improves average performance by 8.9% (-O2) and 8.5% (-O3) over the conventional helper threaded prefetching that greedily prefetches all delinquent loads. We also compare our proposal with the active threaded prefetching which synchronizes with main thread by semaphore, and find that our proposal provides better performance for the targeted applications.
Chip Multiprocessor (CMP) presents new opportunities to data prefetching. Prefetching thread is a well known approach to reduce memory latency and to improve performance, and has been explored in different applications. However, for applications with linked data structure(LDS), prefetching thread tends to achieve little overall performance gains. In this paper, we analyze the performance of conventional prefetching thread by an example and five selected benchmarks from Olden benchmark suite. The experimental results show that it gets best performance when computation/access latency ratio is close to 1. In addition, we propose a theorem with its proof and testify it by our experiment results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.