In the context of the digital economy and based on the characteristics of digital financial development in China, this paper investigates the effect of digital finance on economic growth and explores its influencing mechanism. A panel econometric model, mediating effect model, and instrumental variable method were employed to evaluate yearly data from 30 provinces of China from 2011 to 2018. The results show that the development of digital finance has significantly driven economic growth, which is quantitatively robust after the selection of historical data as instrumental variables and other robustness tests. A heterogeneity analysis proved that provinces in the central and western regions, which have a lower urbanization rate and lower physical capital, more clearly embody the facilitating impacts of digital finance on economic growth compared to their counterparts in other regions. Further analysis found that the development of digital finance has spurred the liberation of regional entrepreneurship, which in turn promoted economic growth—that is, there is an entrepreneurial channel by which digital finance could boost economic growth.
The integrated gasification and combined cycle (IGCC), uses low rank coal (higher moisture and volatile contents and lower heating value) as fuel for gasification (e.g Texaco gasifier of Tampa electric with low ash coal) and convert the solid fuel into synthetic gas mainly consisting of CO and H2. During the storage of fresh low rank but highly reactive coals near the IGCC plants, the coals undergo drying and low temperature atmospheric oxidation which raises the temperature, reduces the moisture and eventually causes spontaneous ignition if the temperature rises above about 800 °C in the coal piles for bituminous and 500 °C for lignite coals. Thus it is of interest to understand the dewatering mechanism of the low rank lignite by drying samples using N2, CO2 and air (which represents partial oxidation) as drying mediums. Fundamental experiments were performed on dewatering of coal samples using thermo-gravimetric analysis (TGA) with different particle sizes and drying mediums. A wide range of drying temperatures from 100 to 225 °C with a step of 25 °C was investigated at a residence time of about 30 minutes. There are no significant differences among moisture weight loss curves for the three drying mediums. It was found that the lignite lost only 5% mass at about 100 °C. With further increase in temperatures most of the mass loss occurred within the temperature range of 120 to 170 °C. The maximum moisture release rate occurred for the temperatures between 125 °C and 140 °C and hence serves as the optimal temperature range for removing the moisture. When drying temperature was below 140 °C, highest moisture release rate occurred in N2 environment while for CO2 environment, optimal temperature rose beyond 140 °C. The structure of the dewatered lignite samples were further investigated through Scanning Electron Microscopy (SEM) studies. When experiments were repeated in air, ignition occurred and corresponding ignition temperatures were obtained. The larger particles reveal lower ignition temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.