In-situ fatigue tests were conducted for exploring the fatigue crack propagation process for Ti-6Al-4V manufactured by selective laser melting (SLM). Fatigue specimens were prepared with two printing orientations by SLM and characterized by scanning electron microscopy (SEM). In-situ fatigue experiments were carried out at 25°C, 200°C, 400°C and 600°C, respectively. Results show that vertically printed specimens have more and larger defects than horizontally printed ones. The fatigue property of horizontally printed specimens is better than that of vertically printed specimens. The anisotropy caused by printing orientation is the reason for the difference in fatigue property. Crack propagation rate increases with temperature. A large number of secondary cracks occurred during the crack propagation at elevated temperature. The branching of secondary cracks releases the energy at the crack tip, and thus slows down the crack growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.