In response to resource shortage and carbon dioxide emissions, an innovative type of sustainable concrete containing LC3, seawater, sea sand, and surface-treated recycled aggregates is proposed in this study to replace traditional concrete. To understand the bond properties between the sustainable concrete and CFRP bars, an investigation was conducted on the bond behavior between sand-coated CFRP bars and advanced sustainable concrete. Pull-out tests were carried out to reveal the failure mechanisms and performance of this bond behavior. The results showed that the slip increased monotonically along with the increase in confinement. The bond strength increased up to approximately 15 MPa, and the critical ratio of C/D was reached. The critical ratio approached 3.5 for the Portland cement groups, while the ratio was determined as approximately 4.5 when LC3 was introduced. When the proportion of LC3 reached 50%, there was a reduction in bond strength. A multisegmented modified bond–slip model was developed to describe the four-stage bond behavior. In terms of bond strength and slip, the proposed advanced concrete exhibited almost identical bond behavior to other types of concrete.
To promote the sustainable development of the construction industry, concrete incorporating polyethylene (PE) fiber-strengthened recycled coarse aggregate (SRCA) and seawater and sea sand (SWSS) is prepared. The usage of SRCA significantly improves the mechanical performance of concrete. The strength is improved, and the failure mode of concrete cylinders is also remarkably altered. The incorporation of SWSS that alleviates the shortage of freshwater and river sand slightly reduces the mechanical strength of concrete at 28 and 90 days, while the replacement of cement by 35% limestone calcined clay cement (LC3) overcomes this drawback. The compressive strength of concrete is further enhanced, and the pore structure is refined. The introduction of LC3 also promotes the formation of Friedel’s salt, which could improve the chloride binding capacity of concrete using SWSS. Furthermore, the stress-strain relationship of sustainable concrete is analyzed, and the experimental results are compared with the commonly used constitutive models. The predictive constitutive models are proposed to effectively describe the mechanical performance of sustainable concrete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.