Although ginseng has been shown to have an antiobesity effect, antiobesity-related mechanisms are complex and have not been completely elucidated. In the present study, we evaluated ginseng’s effects on food intake, the digestion, and absorption systems, as well as liver, adipose tissue, and skeletal muscle in order to identify the mechanisms involved. A review of previous in vitro and in vivo studies revealed that ginseng and ginsenosides can increase energy expenditure by stimulating the adenosine monophosphate-activated kinase pathway and can reduce energy intake. Moreover, in high fat diet-induced obese and diabetic individuals, ginseng has shown a two-way adjustment effect on adipogenesis. Nevertheless, most of the previous studies into antiobesity effects of ginseng have been animal based, and there is a paucity of evidence supporting the suggestion that ginseng can exert an antiobesity effect in humans.
Microbiota contribute to the induction of type 2 diabetes by high-fat/high-sugar (HFHS) diet, but which organs/pathways are impacted by microbiota remain unknown. Using multiorgan network and transkingdom analyses, we found that microbiota-dependent impairment of OXPHOS/mitochondria in white adipose tissue (WAT) plays a primary role in regulating systemic glucose metabolism. The follow-up analysis established that Mmp12+ macrophages link microbiota-dependent inflammation and OXPHOS damage in WAT. Moreover, the molecular signature of Mmp12+ macrophages in WAT was associated with insulin resistance in obese patients. Next, we tested the functional effects of MMP12 and found that Mmp12 genetic deficiency or MMP12 inhibition improved glucose metabolism in conventional, but not in germ-free mice. MMP12 treatment induced insulin resistance in adipocytes. TLR2-ligands present in Oscillibacter valericigenes bacteria, which are expanded by HFHS, induce Mmp12 in WAT macrophages in a MYD88-ATF3–dependent manner. Thus, HFHS induces Mmp12+ macrophages and MMP12, representing a microbiota-dependent bridge between inflammation and mitochondrial damage in WAT and causing insulin resistance.
BackgroundPrevious studies have shown that both ginseng root and ginseng berry exhibit antiobesity and antidiabetic effects. However, a direct comparison of the efficacy and mechanisms between the root and the berry after oral administration remains to be illuminated.MethodsIn this study, we observed the effects of fermented ginseng root (FGR) and fermented ginseng berry (FGB) on obesity and lipid metabolism in high-fat diet induced obese mice.ResultsFGR and FGB significantly inhibited the activity of pancreatic lipase in vitro. Both FGR and FGB significantly suppressed weight gain and excess food intake and improved hypercholesterolemia and fatty liver, while only FGR significantly attenuated hyperglycemia and insulin resistance. Both FGR and FGB significantly inhibited the mRNA expression of Ldlr and Acsl1 while FGR also significantly inhibited expression of Cebpa and Dgat2 in liver. FGR significantly decreased the epididymal fat weight of mice while FGB significantly inhibited the mRNA expression of genes Cebpa, Fas, Hsl, Il1b, and Il6 in adipose tissue.ConclusionSaponin from both FGR and FGB had a beneficial effect on high-fat diet-induced obesity. Compared to FGB, FGR exhibited more potent antihyperglycemic and antiobesity effect. However, only FGB significantly inhibited mRNA expression of inflammatory markers such as interleukins 1β and 6 in adipose tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.