Due to limited treatment options, pre-eclampsia (PE) is associated with fetal perinatal and maternal morbidity and mortality. During the causes of PE, failure of uterine spiral artery remodeling which might be related to functioning abnormally of trophoblast cells, result in the occurrence and progression of PE. Recently, abnormal expression of long non-coding RNAs (lncRNAs), as imperative regulators involved in human diseases progression (included PE), which has been indicated by increasing evidence. In this research, we found that TUG1, a lncRNA, was markedly reduced in placental samples from patients with PE. Loss-function assays indicated that knockdown TUG1 significantly affected cell proliferation, apoptosis, migration and network formation in vitro. RNA-seq revealed that TUG1 could affect abundant genes, and then explore the function and regulatory mechanism of TUG1 in trophoblast cells. Furthermore, RNA immunoprecipitation and chromatin immunoprecipitation assays validated that TUG1 can epigenetically inhibit the level of RND3 through binding to EZH2, thus promoting PE development. Therefore, via illuminating the TUG1 mechanisms underlying PE development and progression, our findings might furnish a prospective therapeutic strategy for PE intervention.
SPRY4-IT1 has been reported to have extremely high expression in normal placenta tissues. It is a Long noncoding RNA (lncRNA), which is associated with cell growth, migration, invasion, and apoptosis in melanoma. A 2.8-fold increase of SPRY4-IT1 expression was validated by Real-time reverse transcription-polymerase chain reaction (qRT-PCR) in severe preeclamptic placenta as compared with that of the normal ones (n=25) in this study. Furthermore, the role of SPRY4-IT1 in proliferation, migration, apoptosis, and network formation ability of trophoblast cells HTR-8/SVneo was assessed. Suppression of SPRY4-IT1 using siRNA treatment and its overexpression using plasmid targeting SPRY4-IT1 were performed in order to explore the biological function of SPRY4-IT1 in the development and progression of trophoblast cells HTR-8/SVneo, in vitro. The results showed that SPRY4-IT1 knockdown enhanced the cell migration and proliferation, and reduced the response of cells to apoptosis. However, exogenous SPRY4-IT1 overexpression significantly decreased the cell migration and proliferation, while increased cell apoptosis. Our study showed for the first time that aberrant expression of lncRNA SPRY4-IT1 might contribute to the abnormal condition of trophoblast cells HTR-8/SVneo. Therefore, we proposed SPRY4-IT1 as a novel lncRNA molecule, which might be associated with the pathogenesis of preeclampsia and might provide a new target for its early diagnosis and treatment.
Lung adenocarcinoma is the most frequently histologic subtype and the most histologically heterogeneous form of lung cancer. De-regulation of Wnt/β-catenin signaling pathway is implicated in lung carcinogenesis. SOX7, as a member of high mobility group (HMG) transcription factor family, plays a role in the modulation of the Wnt/β-catenin signaling pathway. However, the expression pattern and clinicopathological significance of SOX7 in patients with lung adenocarcinoma is still unclear. To address this problem, the SOX7 mRNA expression was detected by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Immunohistochemical studies were performed on 288 pairs of adjacent normal lung and lung adenocarcinoma tissues with complete follow-up records. Association of SOX7 protein expression with clinical outcomes was evaluated using the Kaplan-Meier method and a multivariate Cox proportional hazards regression model. SOX7 mRNA expression was significantly down-regulated in lung adenocarcinoma compared with matched adjacent normal tissues (P < 0.001). SOX7 protein was expressed in the cytoplasm of lung adenocarcinoma cells in 106/288 (36.8 %) of cases, whereas its immunoreactivities were predominantly located in the cytoplasm of the adjacent normal tissues. The reduced SOX7 expression was correlated with poor differentiation (P = 0.002), lymph node metastasis (P = 0.011) and advanced TNM stage (P = 0.006). Regarding patient survival, the overall survival and the disease-free survival rates were both significantly lower in patients with SOX7-negative tumors than in those with SOX7-positive tumors (P = 0.018 and 0.013, respectively). Multivariate analysis using a Cox proportional-hazards model demonstrated that SOX7 expression status was an independent prognostic factor predicting the overall survival and the disease-free survival of patients with lung adenocarcinoma (P = 0.021 and 0.016, respectively).Our data suggest that the decreased expression of SOX7 is an important feature of lung adenocarcinoma. The expression level of SOX protein may be a useful prognostic marker for patients with lung adenocarcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.