Under different degradation conditions, the complexity of natural oscillation of the piston pump will change. Given the difference of the characteristic values of the vibration signal under different degradation states, this paper presents a degradation state recognition method based on improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and eXtreme gradient boosting (XGBoost) to improve the accuracy of state recognition. Firstly, ICEEMDAN is proposed to alleviate the mode mixing phenomenon, which decomposes the vibration signal and obtain the intrinsic mode functions (IMFs) with less noise and more physical meaning, and subsequently the optimal IMF is found by using the correlation coefficient method. Then, the time domain, frequency domain, and entropy of the effective IMF are calculated, and the new characteristic values which can represent the degradation state are selected by principal component analysis (PCA) that it realizes dimension reduction. Finally, the above-mentioned characteristic indexes are used as the input of the XGBoost algorithm to achieve the recognition of the degradation state. In this paper, the vibration signals of four different degradation states are generated and analyzed through the piston pump slipper degradation experiment. By comparing the proposed method with different state recognition algorithms, it can be seen that the method based on ICEEMDAN and XGBoost is accurate and efficient, the average accuracy rate can reach more than 99%. Therefore, this method can more accurately describe the degradation state of the piston pump and has a highly practical application value.
Degradation state recognition and failure prediction are the key steps of prognostic and health management (PHM), which directly affect the reliability of the equipment and the selection of preventive maintenance strategy. Given the problem that the distinction between feature vectors is not obvious and the accuracy of fault prediction is low, a method based on multi-class Gaussian process classification and Gaussian process regression (GPR) is studied by the vibration signal and flow signal in six degraded states of the axial piston pump. For degradation state recognition, the variational mode decomposition (VMD) was used to decompose the vibration signal, and obtaining intrinsic mode function (IMF) components with rich information. Subsequently, multi-scale permutation entropy (MPE) was employed to select feature vectors of IMF components in different states. In order to reduce feature dimensions and improve recognition performance, ReliefF was used to select feature vectors with high weight, then a method based on multi-class Gaussian process classification was established by using these feature vectors to realize the research on the degradation state recognition. The test results demonstrate that the method can effectively identify the degradation state. Its recognition rate reaches 98.9%. Besides, for failure prediction, through the analysis of the wear process and wear mechanism of the valve plate, the curve fitting between the flow and the wear amount was performed by GPR to realize the failure prediction of the axial piston pump. Depending on the evaluation index, the GPR obtained a better failure prediction effect. The results will assist in the realization of predictive maintenance, and which also has significant practical value in project items.
Under the condition of variable rotating speed, it is difficult to extract the degradation characteristics of the axial piston pump, which also reduces the accuracy of degradation recognition. To address these problems, this paper proposes a degradation state recognition method for axial piston pumps by combining spline-kernelled chirplet transform (SCT), adaptive chirp mode pursuit (ACMP), and extreme gradient boosting (XGBoost). Firstly, SCT and ACMP are proposed to deal with the vibration signal instability and high noise of the axial piston pump under variable rotating speed. The instantaneous frequency (IF) of the axial piston pump can be extracted effectively by obtaining the accurate time-frequency distribution of signal components. Then, stable angular domain vibration signals are obtained by re-sampling, and multi-dimensional degradation characteristics are extracted from the angular domain and order spectrum. Finally, XGBoost is used to classify the selected characteristics to recognize the degradation state. In this paper, the vibration signals in four different degradation states are collected and analyzed through the wear test of the valve plate of the axial piston pump. Compared with different pattern recognition algorithms, it is verified that this method can ensure high recognition accuracy.
After focusing on the randomness of the degradation process of the piston pump, the randomness lead to the proposal of a method based on the comprehensive evaluation index to select the characteristic parameters of different levels and characteristics. It was aimed to characterize the process of degradation. Initially the sensitive characteristics of the piston pump degradation were screened out, followed by the short-time test with a small sample for reliability assessment performed on the piston pump valve plate. The local characteristic-scale decomposition was employed to decompose the vibrational signal. Features characterizing the degradation of the valve plate were selected on the basis of the comprehensive evaluation index. Further application of the Principal Component Analysis algorithm was used to transform the degraded feature data to reduce dimension and extract the feature quantities. Then these feature quantities were substituted into the Weibull proportional reliability model. It aimed to calculate the reliability of the piston pump under different degradation states. The bizarre results showed that the combination of real-time effective features and reliability models not only fully reflect the operating state of the piston pump but also effectively evaluate the reliability of the piston pump.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.