A pruning method of artificial neural network based nonlinear equalizer (ANN-NLE) is proposed and validated for single-sideband 4-ary pulse amplitude modulation (SSB-PAM4) in IM/DD system. As a classifier, ANN is capable to form a complex nonlinear boundary among different classifications, which is considered as an appropriate way to mitigate the nonlinear impairments in optical communication system. In this paper, first, we introduce the operation principle of the traditional linear equalizer (LE) and NLE such as volterra equalizer (VE). Then we make an analogy among the LE, VE and ANN-NLE. After that, a novel pruning method is applied to reduce the complexity of ANN. The BER performance of ANN-NLE outperforms VE after fiber transmission. After 60 km fiber transmission, ANN-NLE decreases the BER by about one order of magnitude compared to VE. By implementing the proposed pruning method, the connections of ANN reduced by a factor of 10x while keeping the BER under the threshold of 3.8x10.
An intelligent optical performance monitor using multi-task learning based artificial neural network (MTL-ANN) is designed for simultaneous OSNR monitoring and modulation format identification (MFI). Signals' amplitude histograms (AHs) after constant module algorithm are selected as the input features for MTL-ANN. The experimental results of 20-Gbaud NRZ-OOK, PAM4 and PAM8 signals demonstrate that MTL-ANN could achieve OSNR monitoring and MFI simultaneously with higher accuracy and stability compared with single-task learning based ANNs (STL-ANNs). The results show an MFI accuracy of 100% and OSNR monitoring root-mean-square error of 0.63 dB for the three modulation formats under consideration. Furthermore, the number of neuron needed for the single MTL-ANN is almost the half of STL-ANN, which enables reduced-complexity optical performance monitoring devices for real-time performance monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.