Sarcoma is a rare and an extremely aggressive form of cancer that originates from mesenchymal cells. Pyroptosis exerts a dual effect on tumours by inhibiting tumour cell proliferation while creating a microenvironment suitable for tumour cell development and proliferation. However, the significance of pyroptosis-related gene (PRG) expression in sarcoma has not yet been evaluated. Here, we conduct a retrospective analysis to examine PRG expression in 256 sarcoma samples from The Cancer Genome Atlas database. We identified the PRGs that had a significant correlation with overall patient survival in sarcoma by performing a univariate Cox regression analysis. Subsequently, we conducted a LASSO regression analysis and created a risk model for a six-PRG signature. As indicated from the Kaplan–Meier analysis, this signature revealed a significant difference between high- and low-risk sarcoma patients. A receiver operating characteristic curve analysis confirmed that this signature could predict overall patient survival in sarcoma patients with high sensitivity and specificity. Gene ontology annotation and Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analyses revealed that five independent PRGs were closely associated with increased immune activity. Moreover, we also deciphered that increased number of immune cells infiltrated the tumour microenvironment in sarcoma. In brief, the PRG signature can effectively act as novel prognostic biomarker for sarcoma patients and is associated with the tumour immune microenvironment.
Background: Cutaneous melanoma is cancer that is both malignant and aggressive, with a poor prognosis. Pyroptosis can affect the prognosis of cancer patients by controlling tumor cell growth, migration, and metastasis, as well as is closely related to the tumor immune microenvironment. The significance of pyroptosis-related genes (PRGs) in cutaneous melanoma, however, is unknown. Methods: The training set and external validation sets were cutaneous melanoma samples from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO), respectively. By using univariate Cox regression analysis and selection operator (Lasso) regression model, prognostic genes for overall survival (OS) were found. Candidate genes that were screened were used to calculate risk scores and construct a PRG risk model. The Kaplan Meier curve, time-dependent receiver operating characteristic (ROC) curve, and area under the curve (AUC)were used to assess the functional and prognostic usefulness of gene signatures in the risk model. Furthermore, to speculate on the activity of immune cell infiltration and immune-related pathways in the tumor immune microenvironment and calculate corresponding scores, a single sample gene set enrichment analysis (ssGSEA) was used.Results: An eight PRGs risk signature (AIM2, CASP4, CASP5, CASP8, IL18, NLRC4, NLRP6, PRKACA) were conducted and divided all cutaneous melanoma patients in the TCGA cohort into two groups: Low-risk and High-risk. Both the training and external validation sets showed that patients in the low-risk group showed a significantly higher likelihood of survival than those in the high-risk group (p < 0.001). Except for PRKACA, all the other eight PRGs in our study appeared to be longer survival times for patients. The results of ssGSEA in terms of 16 types of immune cells and the activity of 13 immune-related pathways showed that the High-risk group had lower immune pathway activity and lower levels of immune cell infiltration. In conclusion, the PRG-signature may be a significant predictor of prognosis and may play an essential role in UM patients' tumor immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.