Global Navigation Satellite System Reflectometry (GNSS-R) based Bi-static Synthetic Aperture Radar (BSAR) is becoming more and more important in remote sensing, given its low power, low mass, low cost, and real-time global coverage capability. Due to its complex configuration, the imaging for GNSS-R BSAR is usually based on the Back-Projection Algorithm (BPA), which is very time consuming. In this paper, an efficient and general imaging algorithm for GNSS-R BSAR is presented. A Two Step Range Cell Migration (TSRCM) correction is firstly applied. The first step roughly compensates the RCM and Doppler phase caused by the motion of the transmitter, which simplifies the SAR data into the quasi-mono-static case. The second step removes the residual RCM caused by the motion of the receiver using the modified frequency scaling algorithm. Then, a cubic phase perturbation operation is introduced to equalize the Doppler frequency modulation rate along the same range cell. Finally, azimuth phase compensation and geometric correction are completed to obtain the focused SAR image. A simulation and experiment are conducted to demonstrate the feasibility of the proposed algorithm, showing that the proposed algorithm is more efficient than the BPA, without causing significant degradation in imaging quality.
To increase the global convergence and processing efficiency of particle swarm optimization (PSO) applied in the adaptive joint time-frequency, in this study an improved PSO is proposed to refocus the high-resolution SAR images of complex moving vessels in high sea states. According to the characteristics of the high-order multi-component polynomial phase signal, this algorithm provides parallel processing and co-evolution methods by setting the different permissions of the sub-population and sharing its search information. As a result, the multiple components can be extracted simultaneously. Experiments were conducted using the simulation data and Gaofen-3 (GF-3) SAR data. Results showed the processing speed increased by more than 40% and the global convergence was significantly improved. The imaging results verify the efficiency and robustness of this co-evolutionary PSO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.