Thermophilic polyester hydrolases (PES-H) have recently
enabled
biocatalytic recycling of the mass-produced synthetic polyester polyethylene
terephthalate (PET), which has found widespread use in the packaging
and textile industries. The growing demand for efficient PET hydrolases
prompted us to solve high-resolution crystal structures of two metagenome-derived
enzymes (PES-H1 and PES-H2) and notably also in complex with various
PET substrate analogues. Structural analyses and computational modeling
using molecular dynamics simulations provided an understanding of
how product inhibition and multiple substrate binding modes influence
key mechanistic steps of enzymatic PET hydrolysis. Key residues involved
in substrate-binding and those identified previously as mutational
hotspots in homologous enzymes were subjected to mutagenesis. At 72
°C, the L92F/Q94Y variant of PES-H1 exhibited 2.3-fold and 3.4-fold
improved hydrolytic activity against amorphous PET films and pretreated
real-world PET waste, respectively. The R204C/S250C variant of PES-H1
had a 6.4 °C higher melting temperature than the wild-type enzyme
but retained similar hydrolytic activity. Under optimal reaction conditions,
the L92F/Q94Y variant of PES-H1 hydrolyzed low-crystallinity PET materials
2.2-fold more efficiently than LCC ICCG, which was previously the
most active PET hydrolase reported in the literature. This property
makes the L92F/Q94Y variant of PES-H1 a good candidate for future
applications in industrial plastic recycling processes.
Polybutylene adipate terephthalate (PBAT) is a biodegradable alternative to polyethylene and can be broadly used in various applications. These polymers can be degraded by hydrolases of terrestrial and aquatic origin. In a previous study, we identified tandem PETase-like hydrolases (Ples) from the marine microbial consortium I1 that were highly expressed when a PBAT blend was supplied as the only carbon source. In this study, the tandem Ples, Ple628 and Ple629, were recombinantly expressed and characterized. Both enzymes are mesophilic and active on a wide range of oligomers. The activities of the Ples differed greatly when model substrates, PBAT-modified polymers or PET nanoparticles were supplied. Ple629 was always more active than Ple628. Crystal structures of Ple628 and Ple629 revealed a structural similarity to other PETases and can be classified as member of the PETases IIa subclass, α/β hydrolase superfamily. Our results show that the predicted functions of Ple628 and Ple629 agree with the bioinformatic predictions, and these enzymes play a significant role in the plastic degradation by the consortium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.