Piezoelectric and ferroelectric properties in the two-dimensional (2D) limit are highly desired for nanoelectronic, electromechanical, and optoelectronic applications. Here we report the first experimental evidence of out-of-plane piezoelectricity and ferroelectricity in van der Waals layered α-InSe nanoflakes. The noncentrosymmetric R3m symmetry of the α-InSe samples is confirmed by scanning transmission electron microscopy, second-harmonic generation, and Raman spectroscopy measurements. Domains with opposite polarizations are visualized by piezo-response force microscopy. Single-point poling experiments suggest that the polarization is potentially switchable for α-InSe nanoflakes with thicknesses down to ∼10 nm. The piezotronic effect is demonstrated in two-terminal devices, where the Schottky barrier can be modulated by the strain-induced piezopotential. Our work on polar α-InSe, one of the model 2D piezoelectrics and ferroelectrics with simple crystal structures, shows its great potential in electronic and photonic applications.
Stable cycling of lithium metal anode is challenging due to the dendritic lithium formation and high chemical reactivity of lithium with electrolyte and nearly all the materials. Here, we demonstrate a promising novel electrode design by growing two-dimensional (2D) atomic crystal layers including hexagonal boron nitride (h-BN) and graphene directly on Cu metal current collectors. Lithium ions were able to penetrate through the point and line defects of the 2D layers during the electrochemical deposition, leading to sandwiched lithium metal between ultrathin 2D layers and Cu. The 2D layers afford an excellent interfacial protection of Li metal due to their remarkable chemical stability as well as mechanical strength and flexibility, resulting from the strong intralayer bonds and ultrathin thickness. Smooth Li metal deposition without dendritic and mossy Li formation was realized. We showed stable cycling over 50 cycles with Coulombic efficiency ∼97% in organic carbonate electrolyte with current density and areal capacity up to the practical value of 2.0 mA/cm(2)and 5.0 mAh/cm(2), respectively, which is a significant improvement over the unprotected electrodes in the same electrolyte.
We report the epitaxial formation of bilayer Bernal graphene on copper foil via chemical vapor deposition. The self-limit effect of graphene growth on copper is broken through the introduction of a second growth process. The coverage of bilayer regions with Bernal stacking can be as high as 67% before further optimization. Facilitated with the transfer process to silicon/silicon oxide substrates, dual-gated graphene transistors of the as-grown bilayer Bernal graphene were fabricated, showing typical tunable transfer characteristics under varying gate voltages. The high-yield layer-by-layer epitaxy scheme will not only make this material easily accessible but reveal the fundamental mechanism of graphene growth on copper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.