Metal-free enantiocomplementary hydrolytic dynamic kinetic resolution of Morita−Baylis−Hillman (MBH) acetates was developed using triethylamine (TEA) as a racemization catalyst and wild-type or engineered lipase B from Candida antarctica (CALB) as stereoselectivity-determining catalyst, leading to chiral MBH alcohols with tailor-made R or S configurations on an optional basis. In the TEA-WT CALB catalysis system, WT CALB displays excellent S enantioselectivity for a series of MBH acetates tested (up to 96% ee and 98% conversion). Reversal of enantioselectivity in favor of (R)-MBH alcohols (95% ee; 95% conversion) was achieved by generating a focused site-specific mutagenesis library composed of less than 20 variants. Molecular modeling explains the origin of stereoselectivity.
Inducing civil aviation aircraft to bumpiness, atmospheric turbulence is a typical risk that seriously threatens flight safety. The Eddy Dissipation Rate (EDR) value, as an aircraft-independent turbulence severity indicator, is estimated by a vertical wind-based or aircraft vertical acceleration-based algorithm. Based on the flight data of civil aviation aircraft, the vertical turbulence component is obtained as the input of both algorithms. A new method of computing vertical acceleration response in turbulence is put forward through the Unsteady Vortex Lattice Method (UVLM). The lifting surface of the target aircraft is assumed to be a combination of wing and horizontal tail in a turbulent flight scenario. Vortex rings are assigned on the mean camber surface, forming a non-planar UVLM, to further improve the accuracy. Moreover, the neighboring vortex lattices are placed as close as possible to the structural edge of control surfaces. Thereby, a complete algorithm for estimating vertical acceleration and in situ EDR value from Quick Access Recorder (QAR) flight data is proposed. Experiments show that the aerodynamic performance is computed accurately by non-planar UVLM. The acceleration response by non-planar UVLM is able to track the recorded acceleration data with higher accuracy than that of the linear model. Different acceleration responses at different locations are also obtained. Furthermore, because the adverse effects of aircraft maneuvers are separated from turbulence-induced aircraft bumpiness, the new acceleration-based EDR algorithm shows better accuracy and stability.
With the application of artificial intelligence in various fields, more and more people see the contribution of artificial intelligence technology to the development of the industry, and put more energy in the research of artificial intelligence language, and strive to provide better technical support for the development of more industries. In radio and television media, artificial intelligence voice technology can play a very important value, it can effectively improve the efficiency and quality of traditional audio work, optimize the singing system, broadcasting system and retrieval system, so as to provide better service quality for the masses. This paper discusses the application and development of artificial intelligence technology based on the fusion media environment, analyzes the application and development of artificial intelligence technology in promoting production efficiency, intelligent robot writing, intelligent face recognition, intelligent speech semantic recognition, intelligent OCR recognition, automatic broadcast and other aspects. These AI applications provide efficient and secure support for services, greatly improving service efficiency.
Atmospheric turbulence is a typical risk that threatens the flight safety of civil aviation aircraft. A method of estimating aircraft’s vertical acceleration in turbulence is proposed. Based on the combination of wing and horizontal tail, the continuous change of aerodynamic force in turbulent flight is obtained by unsteady vortex ring method. Vortex rings are assigned on the mean camber surface to further improve the computing accuracy. The incremental aerodynamic derivatives of lift and pitching moment are developed, which can describe the turbulence effects on aircraft. Furthermore, a new acceleration-based eddy dissipation rate (EDR) algorithm was developed to estimate the turbulence severity. Compared with wind tunnel test data, the aerodynamic performance of the lifting surface was computed accurately. A further test on wing–tail combination showed that the computed pitching moment change due to control-surface deflections approaches the aircraft-modeling data. The continuous change of vertical acceleration at any longitudinal locations of aircraft is obtained in turbulent flight. Compared with traditional transfer function-based EDR algorithms, the proposed algorithm shows higher accuracy and stability. Furthermore, the adverse influence of aircraft maneuvering on EDR estimation is eliminated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.