Summary Background Previous studies have demonstrated that the CXCL12/CXCR4 signaling axis is involved in the regulation of neuropathic pain (NP). Here, we performed experiments to test whether the CXCL12/CXCR4 signaling pathway contributes to the pathogenesis of neuropathic pain after spinal nerve ligation (SNL) via central sensitization mechanisms. Methods Neuropathic pain was induced and assessed in a SNL rat model. The expression and distribution of CXCL12 or CXCR4 were examined by immunofluorescence staining and western blot. The effects of CXCL12 rat peptide, CXCL12 neutralizing antibody, CXCR4 antagonist, and astrocyte metabolic inhibitor on pain hypersensitivity were explored by behavioral tests in naive or SNL rats. We measured the expression level of c‐Fos and CGRP to evaluate the sensitization of neurons by RT‐PCR. The activation of astrocyte and microglia was analyzed by measuring the level of GFAP and iba‐1. The mRNA levels of the pro‐inflammatory cytokines such as TNF‐α, IL‐1β, and IL‐6 and Connexin 30, Connexin 43, EAAT 1, EAAT 2 were also detected by RT‐PCR. Results First, we found that the expression of CXCL12 and CXCR4 was upregulated after SNL. CXCL12 was mainly expressed in the neurons while CXCR4 was expressed both in astrocytes and neurons in the spinal dorsal horn after SNL. Moreover, intrathecal administration of rat peptide, CXCL12, induced hypersensitivity in naive rats, which was partly reversed by fluorocitrate. In addition, the CXCL12 rat peptide increased mRNA levels of c‐Fos, GFAP, and iba‐1. A single intrathecal injection of CXCL12 neutralizing antibody transiently reversed neuropathic pain in the SNL rat model. Consecutive use of CXCL12 neutralizing antibody led to significant delay in the induction of neuropathic pain, and reduced the expression of GFAP and iba‐1 in the spinal dorsal horn. Finally, repeated intrathecal administration of the CXCR4 antagonist, AMD3100, significantly suppressed the initiation and duration of neuropathic pain. The mRNA levels of c‐Fos, CGRP, GFAP, iba‐1, and pro‐inflammatory cytokines, also including Connexin 30 and Connexin 43 were decreased after injection of AMD3100, while EAAT 1 and EAAT 2 mRNAs were increased. Conclusion We demonstrate that the CXCL12/CXCR4 signaling pathway contributes to the development and maintenance of neuropathic pain via central sensitization mechanisms. Importantly, intervening with CXCL12/CXCR4 presents an effective therapeutic approach to treat the neuropathic pain.
Background Neurotoxic microglia and astrocytes begin to activate and participate in pathological processes after spinal cord injury (SCI), subsequently causing severe secondary damage and affecting tissue repair. We have previously reported that photobiomodulation (PBM) can promote functional recovery by reducing neuroinflammation after SCI, but little is known about the underlying mechanism. Therefore, we aimed to investigate whether PBM ameliorates neuroinflammation by modulating the activation of microglia and astrocytes after SCI. Methods Male Sprague–Dawley rats were randomly divided into three groups: a sham control group, an SCI + vehicle group and an SCI + PBM group. PBM was performed for two consecutive weeks after clip-compression SCI models were established. The activation of neurotoxic microglia and astrocytes, the level of tissue apoptosis, the number of motor neurons and the recovery of motor function were evaluated at different days post-injury (1, 3, 7, 14, and 28 days post-injury, dpi). Lipocalin 2 (Lcn2) and Janus kinase-2 (JAK2)-signal transducer and activator of transcription-3 (STAT3) signaling were regarded as potential targets by which PBM affected neurotoxic microglia and astrocytes. In in vitro experiments, primary microglia and astrocytes were irradiated with PBM and cotreated with cucurbitacin I (a JAK2-STAT3 pathway inhibitor), an adenovirus (shRNA-Lcn2) and recombinant Lcn2 protein. Results PBM promoted the recovery of motor function, inhibited the activation of neurotoxic microglia and astrocytes, alleviated neuroinflammation and tissue apoptosis, and increased the number of neurons retained after SCI. The upregulation of Lcn2 and the activation of the JAK2-STAT3 pathway after SCI were suppressed by PBM. In vitro experiments also showed that Lcn2 and JAK2-STAT3 were mutually promoted and that PBM interfered with this interaction, inhibiting the activation of microglia and astrocytes. Conclusion Lcn2/JAK2-STAT3 crosstalk is involved in the activation of neurotoxic microglia and astrocytes after SCI, and this process can be suppressed by PBM.
Long noncoding RNAs (LncRNAs) play a crucial role in cell growth, development, and various diseases related to the central nervous system. However, LncRNA differential expression profiles in spinal cord injury are yet to be reported. In this study, we profiled the expression pattern of LncRNAs using a microarray method in a contusion spinal cord injury (SCI) mouse model. Compared with a spinal cord without injury, few changes in LncRNA expression levels were noted 1 day after injury. The differential changes in LncRNA expression peaked 1 week after SCI and subsequently declined until 3 weeks after injury. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the reliability of the microarray, demonstrating that the results were reliable. Gene ontology (GO) analysis indicated that differentially expressed mRNAs were involved in transport, cell adhesion, ion transport, and metabolic processes, among others. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the neuroactive ligand-receptor interaction, the PI3K-Akt signaling pathway, and focal adhesions were potentially implicated in SCI pathology. We constructed a dynamic LncRNA-mRNA network containing 264 LncRNAs and 949 mRNAs to elucidate the interactions between the LncRNAs and mRNAs. Overall, the results from this study indicate for the first time that LncRNAs are differentially expressed in a contusion SCI mouse model.
Objective: The senescence of nucleus pulposus (NP) cells induced by oxidative stress is one of the important causes of intervertebral disc degeneration (IDD). Herein, we investigated the role and action mechanism of silent information regulator 1 (SIRT1) in oxidative stress-induced senescence of rat NP cell. Methods: Premature senescence of rat NP cells was induced by sublethal concentration of hydrogen peroxide (H2O2) (100 μM). SIRT1 was activated with SRT1720 (5 μM) to explore its effect on NP cells senescence. FoxO1 and Akt were inhibited by AS1842856 (0.2 μM) and MK-2206 (5 μM), respectively, to explore the role of Akt-FoxO1-SIRT1 axis in rat NP cells. Pretreatment with the resveratrol (20 μM), a common antioxidant and indirect activator of SIRT1, was done to investigate its role in senescent rat NP cells. Results: The mRNA and protein levels of SIRT1 were decreased in H2O2-induced senescent rat NP cells, and that specific activation of SIRT1 suppresses senescence. And the Akt-FoxO1 pathway, as the upstream of SIRT1, might be involved in the regulation of H2O2-induced senescence of rat NP cells by affecting the expression of SIRT1. In addition, the resveratrol played an anti-senescence role in rat NP cells, which might affect the Akt-FoxO1-SIRT1 axis. Conclusion: SIRT1 ameliorated oxidative stress-induced senescence of rat NP cell which was regulated by Akt-FoxO1 pathway, and resveratrol exerted anti-senescence effects by affecting this signaling axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.