To meet the demands of civil aviation and other precise navigation applications, several satellite-based augmentation systems (SBASs) have been developed around the world, such as the Wide Area Augmentation System (WAAS) for North America, the European Geostationary Navigation Overlay Service (EGNOS) for Europe, the Multi-functional Satellite Augmentation System (MSAS) for Japan, the GPS (Global Positioning System) Aided GEO Augmented Navigation (GAGAN) for India, and the System for Differential Corrections and Monitoring (SDCM) for Russia. The SBASs broadcast messages to correct satellite orbit, clock, and ionosphere errors to augment the GPS positioning performance. In this paper, SBAS orbit, clock and ionospheric corrections are evaluated. Specifically, the orbit, clock and ionospheric corrections derived from SBAS messages are comprehensively evaluated using data collected from the above mentioned systems over 181 consective days. The evaluation indicates that the EGNOS outperforms other systems with signal-in-space range error (SISRE) at 0.645 m and ionospheric correction accuracy at 0.491 m, respectively. Meanwhile, the accuracy of SDCM is comparable to EGNOS with SISRE of 0.650 m and ionospheric correction accuracy of 0.523 m. For WAAS, the SISRE is 0.954 m and the accuracy of ionospheric correction is 0.505 m. The accuracies of the SBAS corrections from the MSAS and GAGAN systems, however, are significantly worse than those of others. The SISREs are 1.931 and 1.325 m and the accuracies of ionospheric corrections are 0.795 and 0.858 m, for MSAS and GAGAN, respectively. At the same time, GPS broadcast orbit, clock and ionospheric corrections are also evaluated. The results show that there are no significant improvements in the SISRE of the broadcast navigation data by applying SBAS corrections. On the other hand, the accuracy of SBAS ionospheric corrections is still much better than GPS broadcast ionospheric corrections, which could still be beneficial for single-frequency users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.