An ingenious approach to accomplish the high signal strengthen and relatively homogeneous spin polarization has been presented in a hybrid optical pumping spin-exchange-relaxation-free atomic magnetometer only utilizing single-beam configuration. We have experimentally demonstrated an approximately three-fold enhancement of the output signal at the optimal spin polarization by optically pumping the thin vapor due to the same spin evolution behavior of the two different kinds of vapor atoms. Eventually, a measuring sensitivity of 30 fT/Hz1/2 was achieved combined with the homemade differential detection system for attenuating large background offset and suppressing optical power noise. This scheme provides a prospect for the development of ultra-highly sensitive and chip-scale atomic magnetometer for the applications that desire both high signal-to-noise ratio and uniform spin polarization, such as magnetocardiography and magnetoencephalography.
The electronic spin polarization of alkali-metal-vapor atoms is a pivotal parameter for atomic magnetometers. Herein, a novel method is presented for determining the spin polarization with a miniaturized single-beam spin-exchange-relaxation-free (SERF) magnetometer on the basis of zero-field cross-over resonance. Two separate laser beams are utilized to heat the cell and interrogate the vapor atoms, respectively. Spin polarization can be extracted by measuring the resonance response signal of the magnetometer to the transverse magnetic field under different irradiances. Results of these experiments are consistent well with the theoretical predictions with the maximum deviation less than 4%. The proposed method has the integrated advantages of possessing a simple configuration and in-situ measurement. Furthermore, combined with a homemade optical differential detection system with a factor of approximately three of the power noise suppression, the developed single-beam SERF atomic magnetometer with a measuring sensitivity of 32 fT/Hz1/2 has been achieved. This demonstrated approach can help guide the development of chip-scale atomic magnetometers for bio-magnetic field imaging applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.