We describe a single beam compact spin exchange relaxation free (SERF) magnetometer whose configuration is simple and compatible with the silicon-glass bonding micro-machining method. Due to the small size of the vapor cell utilized in a miniature atomic magnetometer, the wall relaxation could not be neglected. In this study we show that Ne buffer gas is more efficient than that of the other typically utilized gas species such as nitrogen and helium for wall relaxation reduction theoretically and experimentally. 3 Amagats (1 Amagat=2.69×1019/cm3) Ne gas is filled in the vapor cell and this is the first demonstration of a Cs-Ne SERF magnetometer. In order to reduce the laser amplitude noise and the large background detection offset, which is reported to be the main noise source of a single beam absorption SERF magnetometer, we developed a laser power differential method and a factor of approximately two improvement of the power noise suppression has been demonstrated. In order to reduce the power consumption of the magnetometer, the Cs based atomic magnetometer is studied. We did an optimization of the magnetometer and a sensitivity of 23fT/Hz1/2@100Hz has been achieved. This is the first demonstration of a single beam Cs based SERF magnetometer.
A single-beam spin-exchange relaxation-free (SERF) atomic magnetometer can extract vector magnetic field information by detecting the transmission intensity of a resonant circularly polarized pumping beam, which depends sensitively on the atomic density of the alkali metal. We present a novel scheme to determine atomic density based on zero-field magnetic resonance. The resonance linewidth under different transverse DC magnetic fields is fitted by means of a quadratic function. The atomic density can be extracted from the quadratic coefficients of the fitted function. The experimental results indicate that the deviation of measured density is less than two times compared with the theoretical values between 378 K and 403 K. Furthermore, the influence of modulation field on resonance linewidth is investigated experimentally and theoretically. A miniature single-beam SERF atomic magnetometer with a sensor head volume of only 16.2 cm3 and the measuring sensitivity of 40 fT/ Hz1/2 has been achieved. These results should be beneficial for guiding the development of a chip-scale atomic magnetometer with high sensitivity and spatial resolution for bio-magnetic field imaging applications.
An ingenious approach to accomplish the high signal strengthen and relatively homogeneous spin polarization has been presented in a hybrid optical pumping spin-exchange-relaxation-free atomic magnetometer only utilizing single-beam configuration. We have experimentally demonstrated an approximately three-fold enhancement of the output signal at the optimal spin polarization by optically pumping the thin vapor due to the same spin evolution behavior of the two different kinds of vapor atoms. Eventually, a measuring sensitivity of 30 fT/Hz1/2 was achieved combined with the homemade differential detection system for attenuating large background offset and suppressing optical power noise. This scheme provides a prospect for the development of ultra-highly sensitive and chip-scale atomic magnetometer for the applications that desire both high signal-to-noise ratio and uniform spin polarization, such as magnetocardiography and magnetoencephalography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.