The structure of an improved wind turbine gearbox is presented for meeting the operation of the optimized wind turbine power‐wind speed curve (P‐v curve). When the wind speed is lower than the cut‐in wind speed, the operation mode of the wind turbine is changed by the extra power, which is supplied by the motor excited source to keep the wind turbine running. Moreover, the transmission principle of the improved wind turbine gearbox is discussed. Various motor power impacts on the transmission characteristic for the improved transmission structure are investigated and results are compared with the professional software. Results indicate that as the motor power increases, the transverse vibration of sun gears and meshing forces of the low‐speed and medium‐speed planetary stages decreases. The transverse vibration for the pinion gear of the high‐speed stage enhances with the increase of the motor power. Load‐sharing coefficients of the planetary gear stages are augmented with the enlargement of the motor power. It is found that meshing forces of the torque‐implement parallel stage are increased with augmentation of the motor power.
PurposeTo address the lack of data in this field and determine the relationship between the coefficient of friction and the interference between locomotive wheels and axles, this study evaluates the theoretical relationship between the coefficient of friction and the interference under elastic deformation.Design/methodology/approachWhen using numerical analyses to study the mechanical state of the contacting components of the wheels and axle, the interference between the axle parts and the coefficient of friction between the axle parts are two important influencing factors. Currently, as the range of the coefficient of friction between the wheel and axle in interference remains unknown, it is generally considered that the coefficient of friction is only related to the materials of the friction pair; the relationship between the interference and the coefficient of friction is often neglected.FindingsA total of 520 press-fitting experiments were conducted for 130 sets of wheels and axles of the HXD2 locomotive with 4 types of interferences, in order to obtain the relationship between the coefficient of friction between the locomotive wheel and axle and the amount of interference. These results are expected to serve as a reference for selecting the coefficient of friction when designing axle structures with the rolling stock, research on the press-fitting process and evaluations of the fatigue life.Originality/valueThe study provides a basis for the selection of friction coefficient and interference amount in the design of locomotive wheels and axles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.