Dielectric elastomers have been widely investigated for muscle‐like soft actuators and capacitive sensors. Mechanical properties play a central role in the performances of the active material. Most elastomers have specific moduli pre‐determined by the polymers' molecular structures, which are not suitable for applications in changing working conditions as natural muscles are capable of. Here new dielectric elastomers are described exhibiting variable moduli controlled via thermal treatment. The elastomers contain furan‐maleimide Diels–Alder adduct moieties to administer the crosslinking densities of the elastomeric networks via reversible Diels–Alder/retro‐Diels–Alder cycloaddition reaction, resulting in changes in the elastomers' moduli. One of the synthesized elastomers has moduli that can be controlled between 0.17 and 0.52 MPa incrementally and reversibly. Capacitive strain sensors based on this elastomer can be operated in both rigid and soft modes to achieve variable sensing response up to 30% linear strain. Actuators were fabricated and operated in both high strain mode (35% actuation area strain at 65 MV m−1) and high force output mode (0.55 MPa at 104 MV m−1). The elastomers can exhibit a range of stress–strain outputs in similar fashion as muscle.
Dielectric elastomer actuators (DEAs) feature large, reversible in-plane deformation, and stacked DEA layers are used to produce large strokes in the thickness dimension. We introduce an electrophoretic process to concentrate boron nitride nanosheet dispersion in a dielectric elastomer precursor solution onto a designated electrode surface. The resulting unimorph nanocomposite dielectric elastomer (UNDE) has a seamless bilayer structure with 13 times of modulus difference. The UNDE can be actuated to large bending curvatures, with enhanced breakdown field strength and durability as compared to conventional nanocomposite dielectric elastomer. Multiple UNDE units can be formed in a simple electrophoretic concentration process using patterned electrode areas. A disc-shaped actuator comprising six UNDE units outputs large bidirectional stroke up to 10 Hz. This actuator is used to demonstrate a high-speed lens motor capable of varying the focal length of a two-lens system by 40 times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.