BackgroundCachexia is defined as an involuntary decrease in body weight, which can increase the risk of death in cancer patients and reduce the quality of life. Cachexia-inducing factors (CIFs) have been reported in colorectal cancer and pancreatic adenocarcinoma, but their value in diffuse large B-cell lymphoma (DLBCL) requires further genetic research.MethodsWe used gene expression data from Gene Expression Omnibus to evaluate the expression landscape of 25 known CIFs in DLBCL patients and compared them with normal lymphoma tissues from two cohorts [GSE56315 (n = 88) and GSE12195 (n = 136)]. The mutational status of CIFs were also evaluated in The Cancer Genome Atlas database. Based on the expression profiles of 25 CIFs, a single exploratory dataset which was merged by the datasets of GSE10846 (n = 420) and GSE31312 (n = 498) were divided into two molecular subtypes by using the method of consensus clustering. Immune microenvironment between different subtypes were assessed via single-sample gene set enrichment analysis and the CIBERSORT algorithm. The treatment response of commonly used chemotherapeutic drugs was predicted and gene set variation analysis was utilized to reveal the divergence in activated pathways for distinct subtypes. A risk signature was derived by univariate Cox regression and LASSO regression in the merged dataset (n = 882), and two independent cohorts [GSE87371 (n = 221) and GSE32918 (n = 244)] were used for validation, respectively.ResultsClustering analysis with CIFs further divided the cases into two molecular subtypes (cluster A and cluster B) associated with distinct prognosis, immunological landscape, chemosensitivity, and biological process. A risk-prognostic signature based on CCL2, CSF2, IL15, IL17A, IL4, TGFA, and TNFSF10 for DLBCL was developed, and significant differences in overall survival analysis were found between the low- and high-risk groups in the training dataset and another two independent validation datasets. Multivariate regression showed that the risk signature was an independently prognostic factor in contrast to other clinical characteristics.ConclusionThis study demonstrated that CIFs further contribute to the observed heterogeneity of DLBCL, and molecular classification and a risk signature based on CIFs are both promising tools for prognostic stratification, which may provide important clues for precision medicine and tumor-targeted therapy.
Background: DNA-methylation-based machine learning algorithms have demonstrated powerful diagnostic capabilities, and these tools are currently emerging in many fields of tumor diagnosis and patient prognosis prediction. This work aimed to identify novel DNA methylation diagnostic biomarkers for differentiating cervical cancer (CC) from normal tissues, as well as a prognostic prediction model to predict survival of CC patients. Methods: The methylation profiles with the available clinical characteristics were downloaded from the Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) program. We first screened out the differential methylation sites in CC and normal tissues and performed multiple statistical analyses to discover DNA methylation diagnostic markers that are used to distinguish CC and normal control. Then, we developed a methylation-based survival model to improve risk stratification. Results: A diagnostic prediction panel consists of five CpG markers that could predict cervical cancer versus normal tissue with highly correct rate of 100%, and cg16428251, cg22341310, and cg23316360 which in diagnostic prediction panel all could yield high sensitivity and specificity for detection of CC and normal in six cohorts (area under curve [AUC] > 0.8), in addition to excellent performance in discriminating between CC and normal sample. The diagnostic marker panel also effectively predicted the CIN3 versus normal tissue with high accuracy in two datasets (AUC = 0.80, 0.789, respectively). Furthermore, a prognostic prediction model aggregated two CpG markers that effectively stratified the prognosis of high-risk and low-risk groups (training cohort: hazard ratio [HR] 4, 95% CI: 1.7-9.6, P = 0.0021; testing cohort: hazard ratio [HR] 1.9, 95% CI: 1.2-3.1, P = 0.0072). Conclusion:The findings of our study showed that DNA methylation markers are of great value in the diagnosis and prognosis of CC.
The current study aimed to explore the mechanisms associated with classic Hodgkin lymphoma (cHL) to identify novel diagnostic and therapeutic targets. The GES12453 microarray dataset was downloaded from the Gene Expression Omnibus database; the differentially expressed genes (DEGs) between cHL samples and normal B cell samples by were identified using the limma package. Gene ontology (GO) and pathway enrichment analysis of DEGs gene were performed. Furthermore, construction and analysis of protein-protein interaction (PPI) network was performed, and co-expression modules of DEGs were produced. A total of 450 DEGs were identified, comprising 216 upregulated and 234 downregulated genes in cHL compared with normal B cell samples. The DEGs were enriched in biological processes associated with immune response. The upregulated genes were mainly associated with the pathway of transcriptional misregulation in cancer, while downregulated genes were associated with B cell receptor signaling. PPI network analysis demonstrated that IL6 had the highest connectivity degree. Interleukin-6 (IL6) and signal transducer and activator of transcription 1 (STAT1) were demonstrated to be involved with the response to cytokine GO term in co-expression module 1. Spleen tyrosine kinase (SYK), B-cell linker protein (BLNK), CD79B, phospholipase C γ2 (PLCG2) were enriched in the B cell receptor signaling pathway in module 2. Matrix metallopeptidase 9 (MMP9), protein tyrosine phosphatase receptor type C had the highest connectivity degrees in module 3 and module 4, respectively. The results suggested that DEGs, including IL6, STAT1, MMP9, SYK, BLNK, PLCG2 and CD79B, and the pathways of B cell receptor signaling, Epstein-Barr virus infection and transcriptional misregulation in cancer have strong potential to be useful as targets for diagnosis or treatment of cHL.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.