A coastline is the boundary zone between land and sea, an active zone of human social production activities and an area where the ecology is fragile and easy to change. The traditional method to analyze temporal and spatial changes in the coastline is to extract the coastline through remote sensing, LiDAR, and field sampling and analyze the temporal and spatial changes with statistical data. The coastline extracted by these methods has high spatial and temporal resolution, but it requires remote sensing images and data obtained by other sensors, so it is impossible to extract coastlines from before the emergence of remote sensing technology. This paper improves the coastline generation algorithm. Firstly, a triangulated irregular network is used to generate the preliminary rough coastline, and then, each line segment is optimized with Python language according to the influence range of the place names to further approach the real coastline. The accuracy of the coastline extracted by this method can reach 80% within 500 m, which is of great significance in the mapping and analysis of small- and medium-scale coastlines. This paper analyzes the changes in the coastline of Hainan Island before the founding of China (pre-founding) and in modern times and analyzes the impact of coastal development on coastline change. Through the analysis, it is found that, from before the founding of the People’s Republic of China to the present, the natural coastline of Hainan Island has become shorter, the artificial coastline has become longer, and the coastline generally presents a trend of advancing toward the ocean. This method realizes coastline construction under the condition of missing remote sensing images and puts forward a new way to study historical coastline changes.
Using toponym data, population data, and night-time light data, we visualized the development index of the Yi, Wa, Zhuang, Naxi, Hani, and Dai ethnic groups on ArcGIS as well as the distribution of 25 ethnic minorities in the study area. First, we extracted the toponym data of 25 ethnic minorities in the study area, combined with night-time light data and the population proportion data of each ethnic group, then we obtained the development index of each ethnic group in the study area. We compared the development indexes of the Yi, Wa, Zhuang, Naxi, Hani, and Dai ethnic groups with higher development indexes. The results show that the Yi nationality’s development index was the highest, reaching 28.86 (with two decimal places), and the Dai nationality’s development index was the lowest (15.22). The areas with the highest minority development index were concentrated in the core area of the minority development, and the size varied with the minority’s distance. According to the distribution of ethnic minorities, we found that the Yi ethnic group was distributed in almost the entire study area, while other ethnic minorities had obvious geographical distribution characteristics, and there were multiple ethnic minorities living together. This research is of great significance to the cultural protection of ethnic minorities, the development of ethnic minorities, and the remote sensing mapping of lights at night.
Aiming at the problem that the estimation of electric power consumption (EPC) by using night-time light (NTL) data is mostly concentrated in large areas, a method for estimating EPC in rural areas is proposed. Rural electric power consumption (REPC) is a key indicator of the national socio-economic development. Despite an improved quality of life in rural areas, there is still a big gap between electricity consumption between rural residents and urban residents in China. The experiment takes REPC as the research target, selects Dehong (DH) Dai Jingpo Autonomous Prefecture of Yunnan Province as an example, and uses the NTL data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day–Night Band (DNB) carried by the Suomi National Polar-orbiting Partnership (NPP) Satellite from 2012 to 2017, toponym and points-of-interest (POI) data as the main data source. By performing kernel density estimation to extract the urban center and rural area boundaries in the prefecture, and combining the county-level boundary data and electric power data, a linear regression model of the total rural NTL intensity and REPC is estimated. Finally, according to the model, the EPC in ethnic minority rural areas is estimated at a 1-km spatial resolution. The results show that the NPP-REPC model can simulate REPC within a small average error (17.8%). Additionally, there are distinct spatial differences of REPC in ethnic minority areas.
In previous studies using night-time light (NTL) image in analyzing light pollution, most of the researchers focused on national or regional scale analysis. While in this article we focus on the perception of light pollution's influence to the environment of human settlement. We propose an analysis method mainly utilizing NTL images and a city's point of interest (POI) data to assess the light pollution from the aspect of its impact on the environment of city residents. The method quickly provides light pollution analysis at a fine spatial scale. We also address the POI data in a novel aggregating algorithm to better construct the area of interest, which can conquer the limitation of spatial resolution of NTL data in some extent. By doing the assessment in two Chinese medium-size cities, light pollution sources, the pollution level for each residence are found and analyzed. Furthermore, several light pollution patterns are discovered and interpreted. The result of the experiment demonstrates our assessment method provides a fast way to analyze light pollution patterns and can show the detailed light pollution situation in a city. Index Terms-Night-time light (NTL), point of interest (POI), remote monitoring, urban light pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.