While the carbon-based metal-free electrocatalysts for oxygen reduction reaction (ORR) have experienced great progress in recent years, the fundamental issue on the origin of ORR activity is yet far from being clarified. To date, the ORR activities of these electrocatalysts are usually attributed to different dopants, while the contribution of intrinsic carbon defects has been little touched. Herein, we report the high ORR activity of the defective carbon nanocages, which is better than that of the B-doped carbon nanotubes and comparable to that of the N-doped carbon nanostructures. Density functional theory (DFT) calculations indicate that pentagon and zigzag edge defects are responsible for the high ORR activity. The mutually corroborated experimental and theoretical results reveal the significant contribution of the intrinsic carbon defects to ORR activity, which is crucial for understanding the ORR origin and exploring the advanced carbon-based metal-free electrocatalysts.
The synergism of large surface area, multiscale porous structure, and good conductivity endows hierarchical carbon nanocages with high-level supercapacitive performances. Further nitrogen doping greatly improves the hydrophilicity, which boosts the supercapacitive performances to an ultrahigh specific capacitance of up to 313 F g(-1) at 1 A g(-1).
Aprotic Li-O batteries represent promising alternative devices for electrical energy storage owing to their extremely high energy densities. Upon discharge, insulating solid LiO forms on cathode surfaces, which is usually governed by two growth models, namely the solution model and the surface model. These LiO growth models can largely determine the battery performances such as the discharge capacity, round-trip efficiency and cycling stability. Understanding the LiO formation mechanism and controlling its growth are essential to fully realize the technological potential of Li-O batteries. In this review, we overview the recent advances in understanding the electrochemical and chemical processes that occur during the LiO formation. In the beginning, the oxygen reduction mechanisms, the identification of O/LiO intermediates, and their influence on the LiO morphology have been discussed. The effects of the discharge current density and potential on the LiO growth model have been subsequently reviewed. Special focus is then given to the prominent strategies, including the electrolyte-mediated strategy and the cathode-catalyst-tailoring strategy, for controlling the LiO growth pathways. Finally, we conclude by discussing the profound implications of controlling LiO formation for further development in Li-O batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.