Summary
To explore the effect of lncRNA TINCR on the biological behaviours of trophoblasts, we detected and analyzed the expression of terminal differentiation-induced non-protein coding RNA (TINCR) in the placenta tissues of pre-eclamptic and non-pre-eclamptic pregnant women. The gain- and loss-of-function of TINCR was performed to examine the proliferation, migration and invasion abilities of Htr-8/Svneo cells. The levels of epithelial–mesenchymal transition (EMT)-related proteins, cyclin and Wnt/β-catenin pathway were detected. High expression of lncRNA TINCR appeared in placental tissues of patients with pre-eclampsia. The proliferation, invasion and migration of Htr-8/Svneo cells were promoted by TINCR downregulation; the cells were transited from G0/G1 to S phase; and EMT was promoted and the Wnt/β-catenin pathway was activated. In summary, the downregulation of lncRNA TINCR activated the Wnt/β-catenin pathway and promoted the proliferation, invasion and migration of Htr-8/Svneo cells. This study may provide a theoretical basis for treatment of patients with pre-eclampsia.
The main purpose of the current research work was to study in vitro anticancer effects of betulin in OVCAR-3 human ovarian carcinoma cells along with examining its effects on cellular apoptosis, cell cycle phase distribution, cell migration and invasion and mTOR/PI3K/AKT signalling pathway. The cell proliferation of OVCAR-3 cells at various doses of the drug was studied by CCK8 cell viability assay. Effects on cell apoptosis were studied by fluorescence microscopy and western blot. Effects on cell cycle were evaluated by flow cytometry and western blot. Transwell assays were used to study effects on cell migration and invasion. The results indicated that betulin led to significant reduction of OVCAR-3 cell viability in a dose-dependent as well as time dependent manner. Betulin also led to reduction in cell colonies. The anticancer effects of betulin were due to the induction of apoptosis which was seen by increased apoptotic cells with yellow and orange fluorescence. Betulin prompted mitochondrial apoptosis which was also associated with alteration in the apoptosis-related protein expression (Bax, Bad and Bcl-2 and Bcl-xL). The molecule also led to G2/M phase cell cycle arrest on OVACR-3 ovarian carcinoma cells. It was also observed that betulin could inhibit the migration and invasion of the ovarian cancer cells in a concentration-dependent manner. Betulin molecule also resulted in blocking of mTOR/PI3K/AKT signalling pathway. In conclusion, this study clearly indicates the anticancer effects of betulin natural product in OVCAR-3 human ovarian cancer cells are mediated via apoptosis induction, G2/M phase cell cycle arrest, cell migration and invasion inhibition and targeting of mTOR/PI3K/AKT signalling pathway.
Objective. We aimed to observe the impact of ginkgolic acid (GA) on the proliferation and metastasis ability of ovarian cancer (OCa) cells and to further explore whether GA affects the malignant progress of OCa via regulating the lncRNA MALAT1/JAK2 axis. Methods. OCa cells SKOV3 and CAOV3 were administered with 1 ng/ml GA, 5 ng/ml GA, 10 ng/ml GA, 20 ng/ml GA, and DSMO as control, respectively. The cell proliferation and migration ability of the abovementioned cells in each group were measured by CCK-8 test and Transwell experiments. The expression levels of lncRNA MALAT1 and JAK2 protein were examined by qRT-PCR and western blot, respectively. Subsequently, in OCa cells treated with GA, lncRNA MALAT1 overexpression vector was transfected to continue to detect the proliferation activity and migration ability of each treatment group. Finally, the regulation of GA on activity of lncRNA MALAT1/JAK2 axis in OCa cells was further explored in nude mice. Results. Our data showed that the proliferation inhibition rate of cells at each ginkgolic acid concentration was higher than that of the control group (
P
<
0.05
), suggesting that GA has an inhibitory influence on the proliferation of OCa cells, in a dose-dependent way. GA was able to inhibit the proliferation rate and migration ability of OCa cells. Administration of ginkgolic acid downregulated the levels of lncRNA MALAT1 and JAK2 protein. Overexpression of lncRNA MALAT1 partially reversed the inhibited OCa proliferative capacity caused by GA treatment. Consistent with the results observed in vitro, we also found that the OCa tumor weight and volume of nude mice injected with lncRNA MALAT1 overexpression vector were enhanced and JAK2 protein level increased remarkably in comparison to the ginkgolic acid group. Conclusions. In summary, GA may exert its inhibitory effect on the proliferative and migratory capacities of OCa cells through suppressing the activity of lncRNA MALAT1/JAK2 axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.