Ethnopharmacological relevance Rosmarinic acid (RA), a caffeic acid-related compound found in high concentrations in Prunella vulgaris (self-heal), and ursolic acid (UA), a pentacyclic triterpene acid concentrated in Salvia officinalis (sage), have been traditionally used to treat inflammation in the mouth, and may also be beneficial for gastrointestinal health in general. Aim of the study To investigate the permeabilities of RA and UA as pure compounds and in P. vulgaris and S. officinalis ethanol extracts across human intestinal epithelial Caco-2 cell monolayers. Materials and methods The permeabilities and Phase II biotransformation of RA and UA as pure compounds and in herbal extracts were compared using Caco-2 cells with HPLC detection. Results The apparent permeability coefficient (Papp) for RA and RA in P. vulgaris extracts was 0.2 ± 0.05 × 10−6 cm/s, significantly increased to 0.9 ± 0.2 × 10−6 cm/s after β-glucuronidase/sulfatase treatment. Papp for UA and UA in S. officinalis extract was 2.7 ± 0.3 × 10−6 cm/s and 2.3 ± 0.5 × 10−6 cm/s before and after β-glucuronidase/sulfatase treatment, respectively. Neither compound was affected in permeability by the herbal extract matrix. Conclusion RA and UA in herbal extracts had similar uptake as that found using the pure compounds, which may simplify the prediction of compound efficacy, but the apparent lack of intestinal glucuronidation/sulfation of UA is likely to further enhance the bioavailability of that compound compared with RA.
Although bacterial mechanisms involved in the resistance to inorganic arsenic are well understood, the molecular basis for organic arsenic resistance has not been described. Campylobacter jejuni, a major food-borne pathogen causing gastroenteritis in humans, is highly prevalent in poultry and is reportedly resistant to the arsenic compound roxarsone (4-hydroxy-3-nitrobenzenearsonic acid), which has been used as a feed additive in the poultry industry for growth promotion. In this study, we report the identification of a novel membrane transporter (named ArsP) that contributes to organic arsenic resistance in Campylobacter. ArsP is predicted to be a membrane permease containing eight transmembrane helices, distinct from other known arsenic transporters. Analysis of multiple C. jejuni isolates from various animal species revealed that the presence of an intact arsP gene is associated with elevated resistance to roxarsone. In addition, inactivation of arsP in C. jejuni resulted in 4-and 8-fold reductions in the MICs of roxarsone and nitarsone, respectively, compared to that for the wild-type strain. Furthermore, cloning of arsP into a C. jejuni strain lacking a functional arsP gene led to 16-and 64-fold increases in the MICs of roxarsone and nitarsone, respectively. Neither mutation nor overexpression of arsP affected the MICs of inorganic arsenic, including arsenite and arsenate, in Campylobacter. Moreover, acquisition of arsP in NCTC 11168 led to accumulation of less roxarsone than the wild-type strain lacking arsP. Together, these results indicate that ArsP functions as an efflux transporter specific for extrusion of organic arsenic and contributes to the resistance to these compounds in C. jejuni. Campylobacter, a Gram-negative microaerobic bacterium, is a leading bacterial cause of food-borne diseases, and Campylobacter infections account for 400 to 500 million cases of diarrhea each year in developed and developing countries (1). A recent estimate from the CDC indicated that campylobacteriosis accounts for 9% of food-borne illness (over 840,000 cases) every year in the United States (2). Campylobacter jejuni and Campylobacter coli are the two most important Campylobacter species that cause food-borne infections of humans, and raw poultry meat serves as the main source of infection (3). Roxarsone, an organoarsenic compound, has been extensively used as a feed additive in the poultry industry to control bacterial and coccidial infections and improve weight gain, feed utilization, and pigmentation (4). Although it was recently withdrawn from poultry use in the United States, it has been estimated that roxarsone was utilized in approximately 70% of the U.S. broiler production units (4). The concentrations of roxarsone used in feed formulations vary from 22.7 to 45.4 g/ton (5). In animals, roxarsone is excreted into fresh litter and then converted to inorganic arsenate [As(V)] in composted litter via the bioconversion processes (5, 6). The total arsenic concentration in the litter may range from 15 to 48 mg/kg (5-...
A study was conducted in hamsters to determine if artichoke leaf extract (ALE) could lower plasma total and non-HDL cholesterol by increasing fecal excretion of neutral bile acids and sterols. Sixty-four Golden Syrian hamsters (8 week old) were fed control diet or a similar diet containing ALE (4.5 g/kg diet) for 6 weeks. No significant changes for total cholesterol, HDL, non-HDL cholesterol triglycerides or fecal neutral sterols and bile acids were found after 21 days for ALE-fed animals compared with controls. But after 42 days, ALE-fed male hamsters had significantly lower total cholesterol (15%), non-HDL cholesterol (30%) and triglycerides (22%) and female hamsters fed ALE showed reductions of 15% for total cholesterol, 29% for non-HDL cholesterol and 29% for triglycerides compared with controls. Total neutral sterol and bile acids concentrations increased significantly by 50% and 53% in fecal samples of ALE fed males, and 82.4% and 25% in ALE fed females compared with controls. The ALE lowered hamster plasma cholesterol levels by a mechanism involving the greater excretion of fecal bile acids and neutral sterols after feeding for 42 days.
It was hypothesized that a mycotoxin binder, Grainsure E, would inhibit adverse effects of a mixture of fumonisin B1, deoxynivalenol, and zearalenone in rats. For 14 and 28 days, 8-10 Sprague-Dawley rats were fed control diet, Grainsure E (0.5%), toxins (7 μg fumonisin B1/g, 8 μg of deoxynivalenol/g and 0.2 μg of zearalenone/g), toxins (12 μg of fumonisin B1/g, 9 μg of deoxynivalenol/g, and 0.2 μg of zearalenone/g + Grainsure E), or pair-fed to control for food intake of toxin-fed rats. After 28 days, decreased body weight gain was prevented by Grainsure E in toxin-fed female rats, indicating partial protection against deoxynivalenol and fumonisin B1. Two effects of fumonisin B1 were partly prevented by Grainsure E in toxin-fed rats, increased plasma alanine transaminase (ALT) and urinary sphinganine/sphingosine, but sphinganine/sphingosine increase was not prevented in females at the latter time point. Grainsure E prevented some effects of fumonisin B1 and deoxynivalenol in rats. KeywordsAmes Laboratory, fumonisin; deoxynivalenol; zearalanone; mycotoxin binder; Grainsure E ABSTRACT: It was hypothesized that a mycotoxin binder, Grainsure E, would inhibit adverse effects of a mixture of fumonisin B1, deoxynivalenol, and zearalenone in rats. For 14 and 28 days, 8À10 SpragueÀDawley rats were fed control diet, Grainsure E (0.5%), toxins (7 μg fumonisin B1/g, 8 μg of deoxynivalenol/g and 0.2 μg of zearalenone/g), toxins (12 μg of fumonisin B1/g, 9 μg of deoxynivalenol/g, and 0.2 μg of zearalenone/g + Grainsure E), or pair-fed to control for food intake of toxin-fed rats. After 28 days, decreased body weight gain was prevented by Grainsure E in toxin-fed female rats, indicating partial protection against deoxynivalenol and fumonisin B1. Two effects of fumonisin B1 were partly prevented by Grainsure E in toxin-fed rats, increased plasma alanine transaminase (ALT) and urinary sphinganine/sphingosine, but sphinganine/sphingosine increase was not prevented in females at the latter time point. Grainsure E prevented some effects of fumonisin B1 and deoxynivalenol in rats.
The use of Echinacea as a medicinal herb is prominent in the United States, and many studies have assessed the effectiveness of Echinacea as an immunomodulator. We hypothesized that Bauer alkamides 8, 10 and 11 and ketone 24 were absorbed similarly either as pure compounds or from Echinacea sanguinea and Echinacea pallida ethanol extracts, and that these Echinacea extracts could inhibit P-glycoprotein transporter (P-gp) in Caco-2 human intestinal epithelial cells. Using HPLC analysis, the permeation rate of Bauer alkamides by passive diffusion across Caco-2 cells corresponded with compound hydrophilicity (alkamide 8 > 10 > 11), independent of the plant extract matrix. Both Echinacea ethanol extracts stimulated apparent glucuronidation and basolateral efflux of glucuronides of alkamides 8 and 10 but not alkamide 11. Bauer ketone 24 was totally metabolized to more hydrophilic metabolites when administered as a single compound, but was also glucuronidated when present in Echinacea extracts. Bauer alkamides 8, 10 and 11 (175–230 μM) and ethanol extracts of E. sanguinea (1 mg/mL, containing ~90 μM total alkamides) and E. pallida (5 mg/mL, containing 285 μM total alkamides) decreased the efflux of the P-gp probe calcein-AM from Caco-2 cells. These results suggest that other constituents in these Echinacea extracts facilitated the metabolism and efflux of alkamides and ketones, which might improve therapeutic benefits. Alkamides and Echinacea extracts might be useful in potentiating some chemotherapeutics which are substrates for P-gp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.