This study aims to characterize the gut microbiota in depressed patients with bipolar disorder (BD) compared with healthy controls (HCs), to examine the effects of quetiapine treatment on the microbiota, and to explore the potential of microbiota as a biomarker for BD diagnosis and treatment outcome. Analysis of 16S‐ribosomal RNA gene sequences reveals that gut microbial composition and diversity are significantly different between BD patients and HCs. Phylum
Bacteroidetes
and
Firmicutes
are the predominant bacterial communities in BD patients and HCs, respectively. Lower levels of butyrate‐producing bacteria are observed in untreated patients. Microbial composition changes following quetiapine treatment in BD patients. Notably, 30 microbial markers are identified on a random forest model and achieve an area under the curve (AUC) of 0.81 between untreated patients and HCs. Ten microbial markers are identified with the AUC of 0.93 between responder and nonresponder patients. This study characterizes the gut microbiota in BD and is the first to evaluate microbial changes following quetiapine monotherapy. Gut microbiota‐based biomarkers may be helpful in BD diagnosis and predicting treatment outcome, which need further validations.
BACKGROUND AND PURPOSE:Hemodynamics factors play an important role in the rupture of cerebral aneurysms. The purpose of this study was to evaluate the impact of hemodynamic factors on the rupture of the MANs with 3D reconstruction model CFD simulation.
In the clinic selective serotonin reuptake inhibitors (SSRIs), like Fluoxetine, remain the primary treatment for major depression. It has been suggested that miR-16 regulates serotonin transporters (SERT) via raphe nuclei and hippocampal responses to antidepressants. However, the underlying mechanism and regulatory pathways are still obtuse. Here, a chronic unpredicted mild stress (CUMS) depression model in rats was established, and then raphe nuclei miR-16 and intragastric Fluoxetine injections were administered for a duration of 3 weeks. An open field test and sucrose preference quantification displayed a significant decrease in the CUMS groups when compare to the control groups, however these changes were attenuated by both miR-16 and Fluoxetine treatments. A dual-luciferase reporter assay system verified that hsa-miR-16 inhibitory effects involve the targeting of 3′UTR on the 5-HTT gene. Expression levels of miR-16 and BDNF in the hippocampus were examined with RT-PCR, and it was found that increased 5-HT2a receptor expression induced by CUMS can be decreased by miR-16 and Fluoxetine administration. Immunofluorescence showed that expression levels of neuron NeuN and MAP-2 in CUMS rats were lower. Apoptosis and autophagy levels were evaluated separately through relative expression of Bcl-2, Caspase-3, Beclin-1, and LC3II. Furthermore, CUMS was found to decrease levels of hippocampal mTOR, PI3K, and AKT. These findings indicate that apoptosis and autophagy related pathways could be involved in the effectiveness of antidepressants, in which miR-16 participates in the regulation of, and is likely to help integrate rapid therapeutic strategies to alleviate depression clinically. These findings indicate that miR-16 participates in the regulation of apoptosis and autophagy and could account for some part of the therapeutic effect of SSRIs. This discovery has the potential to further the understanding of SSRIs and accelerate the development of new treatments for depression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.