Currently, phosphor-converted LED (pc-LEDs) are revolutionizing the industry of plant growth lighting. To meet the requirements of this technology, phosphors with tunable photoluminescence, high thermal stability and quantum efficiency are required. Herein, we found that the simple substitution of yttrium for lanthanum in La2MgTiO6:Mn4+ system could satisfy above three criteria simultaneously. The photoluminescence properties can be regulated by continuously controlling the chemical composition of La2-xYxMgTiO6:Mn4+ solid solution. The La sites are occupied by Y ions, causing a significant blue shift in the emission spectra which owing to the change of local crystal field strengthen. Meanwhile, the thermal stability and decay lifetimes are also varied due to the variation of band gap energy. Besides, luminous intensity, thermal stability and internal quantum efficiency (IQE) increased by 201.8%, 26%, and 23%, respectively. The electronic luminescence (EL) of pc-LED devices using La2-xYxMgTiO6:Mn4+ red phosphor is evaluated, which matching the absorption regions of plant pigments well, reflecting the superiority of the studied phosphors in plant growth lighting areas.
To mitigate the urban heat island (UHI) and release the low carbon potential of green walls, we analyzed the cooling and energy-saving performance of different green wall designs. Envi-met was applied as the main simulation tool, and a pedestrian street named Yuhou Street was selected as the study object. Four designs of walls were summarized and simulated, demonstrating the living wall system (LWS). Super soil had superiority in cooling and energy saving. Outdoor air temperature, indoor air temperature, outside wall surface temperature, and inside wall surface temperature were analyzed. Apart from the outdoor air temperature, the other three temperatures were all significantly affected by the design of green walls. Finally, energy savings in building cavities were determined. The indoor energy saving ratio of the LWS based on super soil reached 19.92%, followed by the LWS based on boxes at 15.37%, and green facades wall at 6.29%. The indoor cooling powers on this typical day showed that the cooling power of the LWS based on super soil was 8267.32 W, followed by the LWS based on boxes at 6381.57 W, and green facades wall at 2610.08 W. The results revealed the difference in cooling and energy-saving performance of different green walls in this typical hot summer area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.