This PDF file includes:
SOM TextFigs. S1 to S3Background information is provided here on the major trends of wrinkle ridges in the northern smooth plains of Mercury (Fig. S1), on the sources and locations of images shown in Figs. 2 and 3, and on the crater size-frequency distributions shown in Fig. 4.
Von Kármán crater (diameter = ~186 km), lying in the northwestern South Pole‐Aitken (SPA) basin, was formed in the pre‐Nectarian. The Von Kármán crater floor was subsequently flooded with one or several generations of mare basalts during the Imbrian period. Numerous subsequent impact craters in the surrounding region delivered ejecta to the floor, together forming a rich sample of the SPA basin and farside geologic history. We studied in details the targeted landing region (45.0–46.0°S, 176.4–178.8°E) of the 2018 Chinese lunar mission Chang'E‐4, within the Von Kármán crater. The topography of the landing region is generally flat at a baseline of ~60 m. Secondary craters and ejecta materials have covered most of the mare unit and can be traced back to at least four source craters (Finsen, Von Kármán L, Von Kármán L', and Antoniadi) based on preferential spatial orientations and crosscutting relationships. Extensive sinuous ridges and troughs are identified spatially related to Ba Jie crater (diameter = ~4 km). Reflectance spectral variations due to difference in both composition and physical properties are observed among the ejecta from various‐sized craters on the mare unit. The composition trends were used together with crater scaling relationships and estimates of regolith thickness to reconstruct the subsurface stratigraphy. The results reveal a complex geological history of the landing region and set the framework for the in situ measurements of the CE‐4 mission, which will provide unique insights into the compositions of farside mare basalt, SPA compositional zone including SPA compositional anomaly and Mg‐pyroxene annulus, regolith evolution, and the lunar space environment.
China's Chang'E-3 (CE-3) spacecraft touched down on the northern Mare Imbrium of the lunar nearside (340.49°E, 44.12°N), a region not directly sampled before. We report preliminary results with data from the CE-3 lander descent camera and from the Yutu rover's camera and penetrating radar. After the landing at a young 450-meter crater rim, the Yutu rover drove 114 meters on the ejecta blanket and photographed the rough surface and the excavated boulders. The boulder contains a substantial amount of crystals, which are most likely plagioclase and/or other mafic silicate mineral aggregates similar to terrestrial dolerite. The Lunar Penetrating Radar detection and integrated geological interpretation have identified more than nine subsurface layers, suggesting that this region has experienced complex geological processes since the Imbrian and is compositionally distinct from the Apollo and Luna landing sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.