Reconstructive procedures of segmental mandible defects often require bone graft harvesting, which results in donor site morbidity; the use of tissue-engineered bone might mitigate this problem. The aim of the present experimental pilot study was to produce three-dimensional (3D) autologous tissue-engineered constructs that combine autogenous cultivated bone marrow stromal cells with beta-tricalcium phosphate to reconstruct segmental mandible defects without donor site morbidity. Bone marrow stromal cells were isolated from a dog's caput femoris. After differentiation and proliferation in vitro, the cells were seeded into a 3D beta-tricalcium phosphate scaffold. The constructs were incubated under osteogenic culture conditions for 5 days. Segmental defects of 30 mm length were created unilaterally in the mandibles of the animals. Reconstruction was performed using the construct in three dogs and the scaffold only in three dogs as a control group. The specimens were retrieved 3 months later, and the reconstructed areas were processed for gross observation, radiographic examination, 3D computed tomographic (CT) imaging, biomechanical evaluations, and histologic observation. The construct implanted group (n = 3) showed an average height of the reconstructed area of 18.54 mm and the control group 9.16 mm (P < 0.05). Higher radiodensity was present in the construct group than in the control group, as shown by radiograph. 3D CT imaging showed nearly two-thirds absorption of the reconstructed area in the control group. The biomechanical examination of the construct and control groups showed a compression strength of 102.77 N and 42.90 N and stress of 3.504 N/mm and 1.930 N/mm, which demonstrates significant difference. Histologic micrographs showed new bone formation in the scaffolds in central sections of the defects in the construct group 3 months later, with osteoblast seams, osteoclastic resorption, and cartilage formation. The construct of morphologic, 3D beta-tricalcium phosphate scaffold seeded, autologous bone marrow stromal cells ensure bone formation and vascularization throughout the procedure of mandible segmental defect reconstruction, closely resembling how tissue engineering would be used to reconstruct a segmental mandible defect in the clinical setting.
Gram-negative bacterium Vibrio cholerae is the causative agent of cholera, a life-threatening diarrheal disease. During its infectious cycle, V. cholerae routinely switches niches between aquatic environment and host gastrointestinal tract, in which V. cholerae modulates its transcriptome pattern accordingly for better survival and proliferation. A comprehensive resource for V. cholerae transcriptome will be helpful for cholera research, including prevention, diagnosis and intervention strategies. In this study, we constructed a microarray and RNA-seq database of V. cholerae (Mr.Vc), containing gene transcriptional expression data of 145 experimental conditions of V. cholerae from various sources, covering 25 937 entries of differentially expressed genes. In addition, we collected relevant information including gene annotation, operons they may belong to and possible interaction partners of their protein products. With Mr.Vc, users can easily find transcriptome data they are interested in, such as the experimental conditions in which a gene of interest was differentially expressed in, or all genes that were differentially expressed in an experimental condition. We believe that Mr.Vc database is a comprehensive data repository dedicated to V. cholerae and could be a useful resource for all researchers in related fields. Mr.Vc is available for free at http://bioinfo.life.hust.edu.cn/mrvc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.