Many epidemiological studies indicate that consumption of dietary polyphenolic compounds is beneficial in the prevention of cardiovascular diseases. Xanthones are a class of polyphenolic compounds that commonly occur in plants and have been shown to have extensive biological and pharmacological activities. Recently, the pharmacological properties of xanthones in the cardiovascular system have attracted great interest. Xanthones and xanthone derivatives have been shown to have beneficial effects on some cardiovascular diseases, including ischemic heart disease, atherosclerosis, hypertension and thrombosis. The protective effects of xanthones in the cardiovascular system may be due to their antioxidant, antiinflammatory, platelet aggregation inhibitory, antithrombotic and/or vasorelaxant activities. In particular, the antagonism of endogenous nitric oxide synthase inhibitors by xanthones may represent the basis for improved endothelial function and for reduction of events associated with atherosclerosis.
Abstract. Protein-coding genes and small non-coding microRNAs involved in the guidance of differentiation in mesenchymal stem cells (MSCs) into osteoblasts have been extensively investigated in previous studies. However, long non-coding RNAs (lncRNAs), which account for a large proportion of the genomic sequences in numerous species, have not yet been reported. In the present study, the lncRNA expression profile was analyzed using the Arraystar lncRNA array in C3H10T1/2 MSCs undergoing early osteoblast differentiation and 116 differentially expressed lncRNAs were identified between BMP-2 treated and untreated groups. Among these lncRNAs, 59 were upregulated and 57 were downregulated in BMP-2 treated groups. In addition, 24 cooperatively differentially expressed lncRNAs and nearby mRNA pairs were found. For example, mouselincRNA0231 and its nearby gene, EGFR, were downregulated, while lncRNA NR_027652 and its nearby gene, DLK1, were upregulated. These observations may be part of the regulatory mechanisms of lncRNAs in the control of osteoblast differentiaton. In conclusion, results of the present study indicate that lncRNA expression profiles are significantly altered in C3H10T1/2 undergoing early osteoblast differentiation and these results may provide insight into the mechanisms responsible for osteoblast differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.