Sharing of research data in public repositories has become best practice in academia. With the accumulation of massive data, network bandwidth and storage requirements are rapidly increasing. The ProteomeXchange (PX) consortium implements a mode of centralized metadata and distributed raw data management, which promotes effective data sharing. To facilitate open access of proteome data worldwide, we have developed the integrated proteome resource iProX (http://www.iprox.org) as a public platform for collecting and sharing raw data, analysis results and metadata obtained from proteomics experiments. The iProX repository employs a web-based proteome data submission process and open sharing of mass spectrometry-based proteomics datasets. Also, it deploys extensive controlled vocabularies and ontologies to annotate proteomics datasets. Users can use a GUI to provide and access data through a fast Aspera-based transfer tool. iProX is a full member of the PX consortium; all released datasets are freely accessible to the public. iProX is based on a high availability architecture and has been deployed as part of the proteomics infrastructure of China, ensuring long-term and stable resource support. iProX will facilitate worldwide data analysis and sharing of proteomics experiments.
The chemical functionalization of graphene enables control over electronic properties and sensor recognition sites. However, its study is confounded by an unusually strong influence of the underlying substrate. In this paper, we show a stark difference in the rate of electron transfer chemistry with aryl diazonium salts on monolayer graphene supported on a broad range of substrates. Reactions proceed rapidly when graphene is on SiO 2 and Al 2 O 3 (sapphire), but negligibly on alkyl-terminated and hexagonal boron nitride (hBN) surfaces. The effect is contrary to expectations based on doping levels and can instead be described using a reactivity model accounting for substrate-induced electron-hole puddles in graphene. Raman spectroscopic mapping is used to characterize the effect of the substrates on graphene.
Reactivity imprint lithography (RIL) is demonstrated as a technique for spatially patterning chemicalgroups on graphene by patterning the underlying substrate, and is applied to the covalent tethering of proteins on graphene.
The synergism of large surface area, multiscale porous structure, and good conductivity endows hierarchical carbon nanocages with high-level supercapacitive performances. Further nitrogen doping greatly improves the hydrophilicity, which boosts the supercapacitive performances to an ultrahigh specific capacitance of up to 313 F g(-1) at 1 A g(-1).
We report the controlled growth of ultralong single-wall carbon nanotube (SWNT) arrays using an improved chemical vapor deposition strategy. Using ethanol or methane as the feed gas, monodispersed Fe-Mo as the catalyst, and a superaligned carbon nanotube (CNT) film as the catalyst supporting frame, ultralong CNTs over 18.5 cm long were grown on Si substrates. The growth rate of the CNTs was more than 40 mum/s. No catalyst-related residual material was found on the substrates due to the use of a CNT film as the catalyst supporting frame, facilitating any subsequent fabrication of SWNT-based devices. Electrical transport measurements indicated that the electrical characteristics along a single ultralong SWNT were uniform. We also found that maintaining a spatially homogeneous temperature during the growth process was a critical factor for obtaining constant electrical characteristics along the length of the ultralong SWNTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.