This first unaffected pregnancy resulting from PGD for sickle cell anemia demonstrates that the technique can be a powerful diagnostic tool for carrier couples who desire a healthy child but wish to avoid the difficult decision of whether to abort an affected fetus.
A novel polymerase chain reaction (PCR)-based method was used to identify candidate genes whose expression is altered in cancer cells by ionizing radiation. Transcriptional induction of randomly selected genes in control versus irradiated human HL60 cells was compared. Among several complementary DNA (cDNA) clones recovered by this approach, one cDNA clone (CL68-5) was downregulated in X-irradiated HL60 cells but una ected by 12-O-tetradecanoyl phorbol-13-acetate, forskolin, or cyclosporin-A. DNA sequencing of the CL68-5 cDNA revealed 100% nucleotide sequence homology to the reported human Csa-19 gene. Northern blot analysis of RNA from control and irradiated cells revealed the expression of a single 0.7-kilobase (kb) messenger RNA (mRNA) transcript. This 0.7-kb Csa-19 mRNA transcript was also expressed in a variety of human adult and corresponding fetal normal tissues. Moreover, when the e ect of X-or ®ssion neutronirradiation on Csa-19 mRNA was compared in cultured human cells di ering in p53 gene status (p537/7 versus p53+/+), downregulation of Csa-19 by X-rays or ®ssion neutrons was similar in p53-wild type and p53-null cell lines. Our results provide the ®rst known example of a radiation-responsive gene in human cancer cells whose expression is not associated with p53, adenylate cyclase or protein kinase C.
In recent years, distributed generation technology has developed rapidly. Renewable energy, represented by wind energy and solar energy, has been widely studied and utilized. In order to give full play to the advantages of Distributed Generation (DG) and meet the challenges after power grid access, Active Distribution Network (ADN) is considered as the future development direction of traditional distribution network because of its ability of active management. Nowadays, multi-scenario analysis is widely used in the research of optimal allocation of distributed power supply in active distribution network. Aiming at the problems that may arise when using multi-scenario analysis to plan DG with uncertainties in large-scale scenarios, a scenario reduction method based on improved clustering algorithm is proposed. The validity of the scene reduction method is tested, and the feasibility of the method is verified. At present, there are few studies on the optimal allocation of DG in ADN under fault state. In this paper, comprehensive safety indicators are introduced. Considering the timing characteristics of DG and the influence of active management mode, a bi-level programming model is established, which aims at minimizing the investment of annual life cycle and the removal of active power. The bi-level model is a complex mixed integer non-linear programming model. A hybrid algorithm combining cuckoo search algorithm and primal dual interior point method is used to solve the model. Finally, through the simulation of the IEEE-33 node system, the superiority of the scenario reduction method and the comprehensive security index used in this paper to optimize the configuration of DG in ADN is verified.
Some epidemiological studies suggest that exposure to power frequency magnetic fields (MFs) may be associated with an elevated risk of human cancer, but the experimental database remains limited and controversial. We investigated the hypothesis that 60-Hz MF action at the cellular level produces changes in gene expression that can result in neoplastic transformation. Twenty-four hour 200 microT continuous MF exposure produced negative results in two standard transformation systems (Syrian hamster embryo cells and C3H/10T1/2 murine fibroblasts) with or without postexposure to a chemical promoter. This prompted a reexamination of previously reported MF-induced changes in gene expression in human HL60 cells. Extensive testing using both coded and uncoded analyses was negative for an MF effect. Using the same exposure conditions as in the transformation studies, no MF-induced changes in ornithine decarboxylase expression were observed in C3H/10T1/2 cells, casting doubt on a promotional role of MF for the tested cells and experimental conditions. Images Figure 1. Figure 2. A Figure 2. B Figure 2. C Figure 2. D Figure 3. A Figure 3. B Figure 4. Figure 5. A Figure 5. B Figure 5. C Figure 5. D Figure 5. E Figure 6. A Figure 6. B Figure 6. C Figure 6. D Figure 6. E Figure 7. Figure 8. A Figure 8. B Figure 8. C Figure 9. Figure 10. A Figure 10. B
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.