Ginsenoside compound K (C-K) is an intestinal microbiota metabolite of ginsenoside Rb1, a major constituent in American ginseng. However, previous ginseng anticancer observations were largely focused on ginseng parent compounds but not metabolites, and anti-colorectal cancer studies on C-K were limited. This study investigated the antiproliferative effects of C-K when compared to those of Rb1, and the related mechanisms of action, in HCT-116 and SW-480 colorectal cancer cells. The effects of Rb1 and C-K on the proliferation of HCT-116 and SW-480 human colorectal cancer cells were compared using an MTS assay. Cell cycle and cell apoptosis were assayed using flow cytometry. Enzymatic activities of caspases were determined by colorimetric assay, and interactions of C-K and caspases were explored by docking analysis. C-K showed significant antiproliferative effects in HCT-116 and SW-480 cells at concentrations of 30–50 μM. At the same concentrations, Rb1 did not show any effects, while C-K arrested the cells in the G1 phase, and significantly induced cell apoptosis. Compared to HCT-116 (p53 wild type), the p53 mutant cell line SW-480 was more sensitive to C-K as assessed by cell cycle regulation and apoptosis induction. C-K activated expression of caspases 8 and 9, consistent with docking analysis. The docking data suggested that C-K forms hydrogen bonds with Lys-253, Thr-904 and Gly-362 in caspase 8, and with Thr-62, Ser-63 and Arg-207 in caspase 9. C-K, but not its parent ginsenoside Rb1, showed significant antiproliferative and pro-apoptotic effects in human colorectal cancer cells. These results suggest that C-K could be a potentially effective anti-colorectal cancer agent.
Previous phytochemical studies showed that the major flavonoids in Scutellaria baicalensis are baicalin, baicalein, wogonoside and wogonin. The two glycosides (baicalin and wogonoside) can be transformed into their aglycons (baicalein and wogonin), which possess positive anticancer potential. In this study, we used glycosidase to catalyze flavonoids in S. baicalensis to enhance the herb’s anticancer activities. Our HPLC data showed that, using the optimized conditions obtained in our experiments (20 U/g of cellulase, 50ºC, pH 4.8 and treatment for 8 h), there was a marked transformation from the two glycosides to their aglycons. The anticancer activity was subsequently evaluated using a series of S. baicalensis extracts in which variable lengths of glycosidase treatment time were used. Combining analytical and bioassay results, we observed that the higher the aglycon content, the stronger the antiproliferation effects. Compared to the untransformed control, 8 h of glycosidase catalyzing significantly increased antiproliferative activity on human colorectal and breast cancer cells, and its cancer cell growth inhibition is, in part, mediated by cell cycle arrest at the S-phase and induction of apoptosis. Data from this study suggest that using glycosidase to catalyze S. baicalensis offers a promising approach to increase its anticancer activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.