Background
Gut microbiota dysbiosis plays a key role in pathogenesis of severe acute pancreatitis (SAP). In this study, we explored the protective effects of the p38 MAPK inhibitor, SB203580, against gut inflammation and microbiota dysbiosis induced by pancreatic duct injection with 3.5% sodium taurocholate in an SAP rat model.
Material/Methods
Ninety male Sprague-Dawley rats were randomly assigned to sham-operated, SAP model, and SAP plus SB203580 groups (n=30/group). Histological examination was conducted to assess gut and pancreatitis injury. The levels of amylase, D-lactate, diamine oxidase, tumor necrosis factor α, IL-6, IL-1β, and phospho-p38MAPK in the plasma and intestine were evaluated at 3, 6, or 12 h after SAP induction. The gut microbiome was investigated based on16S rDNA gene sequencing at 12 h after SAP induction.
Results
Histological examination revealed edema and inflammatory infiltrations in the pancreas and distal ileum. The expression of tumor necrosis factor α, IL-1β, and IL-6 in plasma and distal ileum was increased in the SAP group, which were restored after treatment with SB203580. Significantly lower bacterial diversity and richness was found in the SAP group. In the SAP group, the abundance of
Bacteroidetes
and
Firmicutes
was decreased, and there was a higher proportion of
Proteobacteria
at the phylum level. The SAP plus SB203580 group exhibited significantly less damage to the gut microbiota, with higher bacterial diversity and a more normal proportion of intestinal microbiota.
Conclusions
SB203580 mediated suppression of the p38 MAPK signaling pathway via reduced gut inflammatory response and microbiota dysbiosis.
The SARS-CoV-2 RNA vaccines are smartly designed to increase the synonymous codon usage by introducing multiple U-to-C mutations. This design would elevate the translation efficiency of vaccine RNAs. However, we found evidence to reason that the designed cytidines might be converted to uridines again by C-to-U RNA deamination in host cells. This C-to-U mechanism might be a main factor that affects the efficacy and safety of RNA vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.