Abstract:In the field of tourism, the development of tourist attractions is gradually playing a crucial role in tourism economy, regional economy and national economy. While tourism economy is stimulated by growing demand, tourist attractions have been facing the situation that ecological environment is becoming fragile and environmental protection is increasingly difficult in China. As low-carbon economy is highlighted more than ever before, how to develop green economy, how to apply theories and technologies, which are related to low-carbon economy, to push forward decarbonation, to protect the ecological environment, and to boost the development of tourism economy have become the core problems for the sustainable development of tourist attractions system. In addition, this system has drawn the attention of scholars and practitioners in recent years. On the basis of low-carbon economy, this paper tries to define the decarbonated development goals and the connotation of tourist attractions system. In addition, it also discusses system structure associated with system dynamics and system engineering, and constructs system simulation model. In the end, a case study is conducted, that is, to predict the development trend of Jiuzhai Valley by adopting the constructed system so as to extend the previous research on low-carbon tourism and to guide the decarbonated development in tourist attractions.
Subalpine vegetation across the Tibetan Plateau is globally one of the most sensitive to climate change. However, the potential landscape‐scale effects of climate change on subalpine forest dynamics remain largely unexplored. Here, we used a forest landscape model (LANDIS‐II) coupled with a forest ecosystem process model (PnET‐II) to simulate forest dynamics under future climate change in Jiuzhaigou National Nature Reserve in the eastern subalpine region of the Tibetan Plateau. We examined changes in the composition, distribution and aboveground biomass of cold temperate coniferous forests, temperate coniferous forests, deciduous broad‐leaved forests and redwood forest under four climate change scenarios (RCP2.6, RCP4.5, RCP8.5 and the current climate) from 2016 to 2096. Our model predicts that by 2096, (i) cold temperate coniferous forests will expand and increase by 7.92%, 8.18%, 8.65% and 7.02% under current climate, RCP2.6, RCP4.5 and RCP8.5 scenarios, respectively; (ii) distribution of forests as a whole shows upward elevational range shift, especially under RCP8.5 scenario and (iii) total aboveground biomass slowly increases at first and then decreases to 12%–16% of current distribution under RCPs. These results show that climate change can be expected to significantly influence forest composition, distribution and aboveground biomass in the subalpine forests of eastern Tibetan Plateau. This study is the first to simulate forest dynamics at the landscape scale in subalpine areas of the Tibetan Plateau, which provides an important step in developing more effective strategies of forest management for expected climate change, not only in China but also around the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.