Summary Epstein-Barr virus (EBV) causes Burkitt, Hodgkin, and post-transplant B cell lymphomas. How EBV remodels metabolic pathways to support rapid B cell outgrowth remains largely unknown. To gain insights, primary human B cells were profiled by tandem-mass-tag-based proteomics at rest and at nine time points after infection; >8,000 host and 29 viral proteins were quantified, revealing mitochondrial remodeling and induction of one-carbon (1C) metabolism. EBV-encoded EBNA2 and its target MYC were required for upregulation of the central mitochondrial 1C enzyme MTHFD2, which played key roles in EBV-driven B cell growth and survival. MTHFD2 was critical for maintaining elevated NADPH levels in infected cells, and oxidation of mitochondrial NADPH diminished B cell proliferation. Tracing studies underscored contributions of 1C to nucleotide synthesis, NADPH production, and redox defense. EBV upregulated import and synthesis of serine to augment 1C flux. Our results highlight EBV-induced 1C as a potential therapeutic target and provide a new paradigm for viral onco-metabolism.
Organic room temperature luminescent materials present a unique phosphorescence emission with a long lifetime. However, many of these materials only emit single blue or green color in spite of external stimulation, and their color tunability is limited. Herein, we report a rational design to extend the emission color range from blue to red by controlling the doping of simple pyrene derivatives into a robust polymer matrix. The integration of these pyrene molecules into the polymer films enhances the intersystem crossing pathway, decreases the first triplet level of the system, and ensures the films show a sensitive response to excitation energy, finally yielding excitation‐dependent long‐life luminescent polymeric systems under ambient conditions. These materials were used to construct anti‐counterfeiting patterns with multicolor interconversion, presenting a promising application potential in the field of information security.
Polymer-based room-temperature phosphorescence (RTP) materials with high flexibility and large-area producibility are highly promising for applications in organic electronics. However, achieving such photophysical materials is challenging because of difficulties in populating and stabilizing susceptible triplet excited states at room temperature. Herein large-area, flexible, transparent, and long-lived RTP systems prepared by doping rationally selected organic chromophores in a poly(vinyl alcohol) (PVA) matrix were realized through a hydrogen-bonding and coassembly strategy. In particular, the 3,6-diphenyl-9H-carbazole (DPCz)-doped PVA film shows long-lived phosphorescence emission (up to 2044.86 ms) and a remarkable duration of afterglow (over 20 s) under ambient conditions. Meanwhile, the 7H-dibenzo[c,g]carbazole (DBCz)-doped PVA film exhibits high absolute luminance of 158.4 mcd m2 after the ultraviolet excitation source is removed. The RTP results not only from suppressing the nonradiative decay by abundant hydrogen-bonding interactions in the PVA matrix but also from minimizing the energy gap (ΔE ST) between the singlet state and the triplet state through the coassembly effect. On account of the outstanding mechanical properties and the afterglow performance of these RTP materials, they were applied in the fabrication of flexible 3D objects with repeatable folding and curling properties. Importantly, the multichannel afterglow light-emitting diode arrays were established under ambient conditions. The present long-lived phosphorescent systems demonstrate a bright opportunity for the production of large-area, flexible, and transparent emitting materials.
Organic long‐persistent luminescence (OLPL) materials have attracted wide attention on account of their fascinating luminescence properties, presenting application prospects in the fields of bioimaging, information security, displays, anti‐counterfeiting, and so on. Some effective strategies have been developed to promote the intersystem crossing (ISC) of the excited singlet state to triplet state and limit nonradiative transition, and thus OLPL materials with long lifetime (more than 1s) and high quantum yield have been explored. However, OLPL materials with dynamic and excitation‐dependent characteristics are rarely reported. In this work, two novel polyphosphazene derivatives containing carbazolyl units are designed and synthesized successfully, and then they are doped into poly(vinyl alcohol) (PVA) films to achieve polymeric long‐persistent luminescence (PLPL). Unexpectedly, excitation‐dependent PLPL (ED‐PLPL) is obtained under ambient conditions (in air at room temperature), and the persistent luminescence color can be changed from blue to green upon varying the excitation wavelength. At the same time, a dynamic cycle of ED‐PLPL is realized based on the formation and destruction of hydrogen bonding interactions between the PVA chains and polyphosphazene phosphor. This work provides a new strategy for the design of color‐tunable polymeric luminescent materials under ambient conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.