Recently, nanostructured thermal barrier coatings have received considerable attention because of some superior properties in comparison with their conventional counterpart. In this study, nanostructured 8 wt% yttria‐stabilized zirconia (n‐YSZ) coatings were deposited by atmospheric plasma spraying, and the degradation behavior caused by molten calcium‐magnesium‐aluminon‐silicate (CMAS) attack was investigated. Results showed that the thermo‐chemical reaction product between CMAS and YSZ (both powders and coatings) is different with the change of CMAS content. At low CMAS concentration, a cubic phase is generated by the diffusion of Ca into YSZ grains. As compared to the conventional YSZ, less C‐ZrO2 is detected for n‐YSZ. When CMAS reaches a certain concentration (eg 15 mg/cm2), disruptive phase transformation from tetragonal to monoclinic will occur and the reaction is more readily for n‐YSZ. Two different chemical reaction mechanisms governing the CMAS content effect were proposed. It should be noted that the nanozone in the coatings plays an important role in the CMAS degradation process, which enhances CMAS infiltration rate and accelerates the chemical reaction, leading to a poor CMAS resistance of the nanostructured coating than that of the conventional counterpart.
Chitosan microspheres (CsMs) that encapsulate salidroside (Sal) were prepared by the emulsion crosslinking method with naturally occurring genipin (Gp) and then examined for their in vitro release. Sal-loaded CsMs (Sal-CsMs) showed nearly spherical and smooth surfaces with internal voids. The particle size of Sal-CsMs ranged within 0.56-5.01 μm, and their encapsulation efficiency and loading capacity were beyond 77.58% and 23.29%, respectively. The stability of Sal improved after entrapment into the CsMs. The release rate of Sal from CsMs was initially rapid, followed by sustained release. The release behavior depended on the pH of the release medium. The main release mechanisms underlying the release procedure were anomalous behavior and Fickian diffusion. These results indicated that CsMs with a novel crosslinker of Gp was a potential carrier system for producing functional foods containing Sal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.