For a complementary metal-oxide-semiconductor image sensor with highly linear, low noise and high frame rate, the nonlinear correction and frame rate improvement techniques are becoming very important. The in-pixel source follower transistor and the integration capacitor on the floating diffusion node cause linearity degradation. In order to address this problem, this paper proposes an adaptive nonlinear ramp generator circuit based on dummy pixels used in single-slope analog-to-digital converter topology for a complementary metal-oxide-semiconductor (CMOS) image sensor. In the proposed approach, the traditional linear ramp generator circuit is replaced with the new proposed adaptive nonlinear ramp generator circuit that can mitigate the nonlinearity of the pixel unit circuit, especially the gain nonlinearity of the source follower transistor and the integration capacitor nonlinearity of the floating diffusion node. Moreover, in order to enhance the frame rate and address the issue of high column fixed pattern noise, a new readout scheme of fully differential pipeline sampling quantization with a double auto-zeroing technique is proposed. Compared with the conventional readout structure without a fully differential pipeline sampling quantization technique and double auto-zeroing technique, the proposed readout scheme cannot only enhance the frame rate but can also improve the consistency of the offset and delay information of different column comparators and significantly reduce the column fixed pattern noise. The proposed techniques are simulated and verified with a prototype chip fabricated using typical 180 nm CMOS process technology. The obtained measurement results demonstrate that the overall nonlinearity of the CMOS image sensor is reduced from 1.03% to 0.047%, the efficiency of the comparator is improved from 85.3% to 100%, and the column fixed pattern noise is reduced from 0.43% to 0.019%.
A radiation-hardened-by-design phase-locked loop (PLL) with a frequency range of 200 to 1000 MHz is proposed. By presenting a novel charge compensation circuit, composed by a lock detector circuit, two operational amplifiers, and four MOS devices, the proposed PLL significantly reduces the recovery time after the presence of a single event transient (SET). Comparing with many traditional hardened methods, most of which endeavor to enhance the immunity of the charge pump output node to an SET, the novel PLL can also decrease its susceptibility in the presence of an SET in other blocks. A novel system model is presented to describe immunity of a PLL to an SET and used to compare the sensitivity of traditional and hardened PLLs to an SET. An SET is simulated on Sentaurus TCAD simulation workbench to model the induced pulse current. Post simulation with a 130 nm CMOS process model shows that the recovery time of the proposed PLL reduces by up to 93.5% compared with the traditional one, at the same time, the charge compensation circuit adds no complexity to the systemic parameter design.
An improved global shutter pixel structure with extended output range and linearity of compensation is proposed for CMOS image sensor. The potential switching of the sample and hold capacitor bottom plate outside the array is used to solve the problem of the serious swing limitation, which will attenuate the dynamic range of the image sensor. The non‐linear problem caused by the substrate bias effect in the output process of the pixel source follower is solved by using the mirror FD point negative feedback self‐establishment technology outside the array. The approach proposed in this paper has been verified in a global shutter CMOS image sensor with a scale of 1024×1024 pixels. The test results show that the output range is expanded from 0.95V to 2V, and the error introduced by the nonlinearity is sharply reduced from 280mV to 0.3mV. Most importantly, the output range expansion circuit does not increase the additional pixel area and the power consumption. The power consumption of linearity correction circuit is only 23.1μW, accounting for less than 0.01% of the whole chip power consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.