The role of localized surface plasmon resonance (LSPR) in UV-Vis light irradiated Au/TiO2 photocatalysis systems has been investigated, and it is demonstrated experimentally for the first time that both pros and cons of LSPR exist simultaneously for this photocatalytic reaction. We have proved that when operating under mixed UV and green light irradiation, the LSPR injected hot electrons (from the Au nanoparticles to TiO2 under green light irradiation) may surmount the Schottky barrier (SB) formed between the Au nanoparticles and TiO2, and flow back into the TiO2. As a result, these electrons may compensate for and even surpass those transferred from TiO2 to the Au nanoparticles, thus accelerating the recombination of UV excited electron-hole pairs in TiO2. This is the negative effect of LSPR. On the other hand, more hot electrons existing on the surface of the Au nanoparticles due to LSPR would favor the photocatalytic reaction, which accompanied by the negative effect dominates the overall photocatalytic performance. The presented results reveal the multi-faceted essence of LSPR in Au/TiO2 structures, and is instructive for the application of metal-semiconductor composites in photocatalysis. Moreover, it is confirmed that the extent to which the above pros and cons of LSPR dominate the overall photocatalytic reaction depends on the intensity ratio of visible to UV light.
High-speed polarization management is highly desirable for many applications, such as remote sensing, telecommunication, and medical diagnosis. However, most of the approaches for polarization management rely on bulky optical components that are slow to respond, cumbersome to use, and sometimes with high drive voltages. Here, we overcome these limitations by harnessing photonic integrated circuits based on thin-film lithium niobate platform. We successfully realize a portfolio of thin-film lithium niobate devices for essential polarization management functionalities, including arbitrary polarization generation, fast polarization measurement, polarization scrambling, and automatic polarization control. The present devices feature ultra-fast control speeds, low drive voltages, low optical losses and compact footprints. Using these devices, we achieve high fidelity polarization generation with a polarization extinction ratio up to 41.9 dB and fast polarization scrambling with a scrambling rate up to 65 Mrad s−1, both of which are best results in integrated optics. We also demonstrate the endless polarization state tracking operation in our devices. The demonstrated devices unlock a drastically new level of performance and scales in polarization management devices, leading to a paradigm shift in polarization management.
The polarization of light conveys unique information that can be exploited by crucial applications. The bulky and costly discrete optical components used in conventional polarimeters limit their broad adoption. A compact, low-cost polarimeter would bring this functionality into a myriad of new scenarios and revolutionize its exploitation. Here we present a high-performance, full-Stokes polarimeter on a silicon chip. A surface polarization splitter and on-chip optical interferometer circuit produce the analysis matrix of an optimally conditioned polarimeter. This solidstate polarimeter is a system-on-a-chip with exceptional compactness, stability, and speed that could be used singly or in integrated arrays. Large arrays can increase the speed and resolution of full-Stokes imaging; therefore, our design provides a scalable polarimeter solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.