A new ionization source based on microwave induced plasma was developed for ambient desorption/ionization. The microwave-induced plasma desorption/ionization source (MIPDI) was composed of a copper Surfatron microwave cavity where a fused-silica tube was centered axially. Stable nonlocal thermodynamic equilibrium plasma was generated in the quartz discharge tube when a microwave at a frequency of 2450 MHz was coupled to the microwave cavity. Analytes deposited on the surface of poly(tetrafluoroethylene) (PTFE) or quartz slide after hydrofluoric acid (HF) etching were desorbed and ionized by the plasma. The performance of the MIPDI technique was validated by the analysis of a variety of chemical substances, polymer compounds, and pharmaceutical drugs using argon or helium as the discharge gas. Protonated [M + H](+) or deprotonated [M - H](-) ions were observed in the positive or negative mode. MIPDI was also used for the analysis of compounds in a complex matrix without any sample preparation. MIPDI was also capable of analyzing liquid samples. The signal-to-noise ratio was 463 in the analysis of 9.2 ng of phenylalanine, and the limit of detection was 60 pg for phenylalanine. MIPDI could desorb and ionize analytes with a molecular weight of up to 1200, which was demonstrated by the analysis of polyethylene glycol 800 (PEG800). MIPDI has advantages of simple instrumentation, relatively high temperature, stability, and reproducibility.
A novel ambient ionization technique for mass spectrometry, microfabricated glow discharge plasma (MFGDP), is reported. This device is made of a millimeter-sized ceramic cavity with two platinum electrodes positioned face-to-face. He or Ar plasma can be generated by a direct current voltage of several hundreds of volts requiring a total power below 4 W. The thermal plume temperature of the He plasma was measured and found to be between 25 and 80 °C at a normal discharge current. Gaseous, liquid, creamy, and solid samples with molecular weights up to 1.5 kDa could be examined in both positive and negative mode, giving limits of detection (LOD) at or below the fg/mm(2) level. The relative standard deviation (RSD) of manual sampling ranged from 10% to ~20%, while correlation coefficients of the working curve (R(2)) are all above 0.98 with the addition of internal standards. The ionization mechanisms are examed via both optical and mass spectrometry. Due to the low temperature characteristics of the microplasma, nonthermal momentum desorption is considered to dominate the desorption process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.