Glutathione (GSH) capped CdTe quantum dots (QDs) with photoluminescence quantum yields of 61% and the maximum emitting at 601.2 nm were prepared in water phase. Giant unilamellar CdTe quantum dot vesicles (GUVs-CdTe), with diameters larger than 1.5 m, were obtained using lower-pressure evaporation techniques with soybean lecithin. Compared with other QD liposomes, the entrapment efficiency of GUVs-CdTe for QDs has been significantly improved to 86.3%. After GUVs-CdTe were injected into mice through the tail vein, the fluorescence microscopy of tissue sections showed that GUVs-CdTe could not pass through the blood-brain barrier and air-blood barrier, which were removed mostly by the reticuloendothelial system and were widely distributed in the spleen and the liver. This behavior is the same as the character of the metabolic pathway of giant unilamellar vesicles by intravenous injections in mice.
quantum dots, giant unilamellar quantum dot vesicles, metabolic pathway
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.