This work systematically investigates the interface behavior and impact properties of the keyhole-free friction stir spot welding (FSSW) of a dissimilar metal AA6082-T4 Al alloy and DP600 galvanized steel. The keyhole is eliminated by pin retraction technology. The welding process is in accordance with the welding temperature curve and the maximum temperature of the periphery of the shoulder, measured at about 500 °C. The transition layers were formed at the interface, in which the Al, Fe, and Zn elements form an inhomogeneous diffusion. A cloud cluster-like mechanical mixing of the Al and steel components is formed in the stirring zone. The impact toughness of the specimen with a welding parameter of 1000 rpm is the best. To a certain extent, the factors affecting the impact energy are not the maximum impact load but the maximum impact deformation. The maximum impact deformation directly reflects the post-crack propagation energy, which significantly affects its impact toughness. In addition, the impact fracture showed a mixed ductile and brittle fracture mode with a brittle–ductile transition zone. Most of the impact energy was absorbed by the ductile fracture.
Abstract:The corrosion behavior of keyhole-free friction stir spot welded joints of dissimilar 6082 aluminum alloy and DP600 galvanized steel in 3.5% NaCl solution has been investigated by the immersion test and electrochemical analysis. The surface of the aluminum alloy produced exfoliation and pitting corrosion. The pitting occurred seriously on the interface of the 6082 aluminum alloy, but the steel had no corrosion. The corrosion galvanic couples were formed between elements of Si and Fe with a high electrode potential, and Mg and Al with a low electrode potential, around them. Mg and Al elements of Mg 2 Si and Si-containing solid-solution phase α (Al) preferentially became an anodic dissolution and formed exfoliation corrosion around the Si elements. Fe-rich phase θ (Al 3 Fe) as the cathode caused corrosion of Mg and formed pitting around Mg-rich phase β (Al 3 Mg 2 ) as the anode. The sequence of the corrosion resistance of different areas of the joints (with decreasing corrosion resistance) was WNZ (Weld Nugget Zone) > TMAZ (Thermo-mechanically Affected Zone) > BM (Base Metal) > HAZ (Heat-affected Zone). The joints of keyhole-free FSSW (Fiction Stir Spot Welding) of dissimilar 6082 aluminum alloy and DP600 galvanized steel have better corrosion resistance than base metal in 3.5% NaCl solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.