Cell encapsulation within photopolymerized polyethylene glycol (PEG)-based hydrogel scaffolds has been demonstrated as a robust strategy for cell delivery, tissue engineering, regenerative medicine, and developing in vitro platforms to study cellular behavior and fate. Strategies to achieve spatial and temporal control over PEG hydrogel mechanical properties, chemical functionalization, and cytocompatibility have advanced considerably in recent years. Recent microfluidic technologies have enabled the miniaturization of PEG hydrogels, thus enabling the fabrication of miniaturized cell-laden vehicles. However, rapid oxygen diffusive transport times on the microscale dramatically inhibit chain growth photopolymerization of polyethylene glycol diacrylate (PEGDA), thus decreasing the viability of cells encapsulated within these microstructures. Another promising PEG-based scaffold material, PEG norbornene (PEGNB), is formed by a step-growth photopolymerization and is not inhibited by oxygen. PEGNB has also been shown to be more cytocompatible than PEGDA and allows for orthogonal addition reactions. The step-growth kinetics, however, are slow and therefore challenging to fully polymerize within droplets flowing through microfluidic devices. Here, we describe a microfluidic-based droplet fabrication platform that generates consistently monodisperse cell-laden water-in-oil emulsions. Microfluidically generated PEGNB droplets are collected and photopolymerized under UV exposure in bulk emulsions. In this work, we compare this microfluidic-based cell encapsulation platform with a vortex-based method on the basis of microgel size, uniformity, post-encapsulation cell viability and long-term cell viability. Several factors that influence post-encapsulation cell viability were identified. Finally, long-term cell viability achieved by this platform was compared to a similar cell encapsulation platform using PEGDA. We show that this PEGNB microencapsulation platform is capable of generating cell-laden hydrogel microspheres at high rates with well-controlled size distributions and high long-term cell viability.
The microfabrication of microfluidic control systems and the development of increasingly sensitive molecular amplificaiton tools has enabled the miniaturization of single cells analytical platforms. Only recently has the throughput of these platforms increased to a level at which populations can be screened at the single cell level. Techniques based upon both active and passive maniuplation are now capable of discriminating between single cell phenotypes for sorting, diagnostic or prognostic applications in a variety of clinical scenarios. The introduction of multiphase microfluidics enables the segmentation of single cells into biochemically discrete picoliter environments. The combination of these techniques are enabling a class of single cell analytical platforms witin great potential for data driven biomedicine, genomics and transcriptomics.
Encapsulating cells within biocompatible materials is a widely pursued and promising element of tissue engineering and cell-based therapies. Recently, extensive interest in microfluidic-enabled cell encapsulation has emerged as a strategy to structure hydrogels and establish custom cellular microenvironments. In particular, it has been shown that the microfluidic-enabled photoencapsulation of cells within PEG diacrylate (PEGDA)-based microparticles can be performed cytocompatibly within gas-permeable, nitrogen-jacketed polydimethylsiloxane microfluidic devices, which mitigate the oxygen inhibition of radical chain growth photopolymerization. Compared to bulk polymerization, in which cells are suspended in a static hydrogel-forming solution during gelation, encapsulating cells via microfluidic processing exposes cells to a host of potentially deleterious stresses such as fluidic shear rate, transient oxygen depletion, elevated pressures, and UV exposure. In this work, we systematically examine the effects of these factors on the viability of cells that have been microfluidically photoencapsulated in PEGDA. It was found that the fluidic shear rate during microdroplet formation did not have a direct effect on cell viability, but the flow rate ratio of oil to aqueous solution would impart harmful effects to cells when a critical threshold was exceeded. The effects of UV exposure time and intensity on cells, however, are more complex, as they contribute unequally to the cumulative rate of peroxy radical generation, which is strongly correlated with cell viability. A reaction-diffusion model has been developed to calculate the cumulative peroxy radical concentration over a range of UV light intensity and radiation times, which was used to gain further quantitative understanding of experimental results. Conclusions drawn from this work provide a comprehensive guide to mitigate the physical and biochemical damage imparted to cells during microfluidic photoencapsulation and expands the potential for this technique.
The encapsulation of live cells into photopolymerized hydrogel scaffolds has the potential to augment or repair tissue defects, establish versatile regenerative medicine strategies, and be developed as well-defined, yet tunable microenvironments to study fundamental cellular behavior. However, hydrogel fabrication limitations constrain most studies to macroscale hydrogel scaffolds encapsulating millions of cells. These macroscale materials possess regions of heterogeneous photopolymerization conditions and are therefore poor platforms to identify the response of individual cells to encapsulation. Recently, microfluidic droplet-based hydrogel miniaturization and cell encapsulation offers high-throughput, reproducible, and continuous fabrication. Reports of post-encapsulation cell viability, however, vary widely among specific techniques. Furthermore, different cell types often exhibit different level of tolerance to photoencapsulation-induced toxicity. Accordingly, we evaluate the cellular tolerance of various encapsulation techniques and photopolymerization parameters for four mammalian cell types, with potential applications in tissue regeneration, using polyethylene glycol diacrylate or polyethylene glycol norbornene (PEGNB) hydrogels on micro- and macro-length scales. We found PEGNB provides excellent cellular tolerance and supports long-term cell survival by mitigating the deleterious effects of acrylate photopolymerization, which are exacerbated at diminishing volumes. PEGNB, therefore, is an excellent candidate for hydrogel miniaturization. PEGNB hydrogel properties, however, were found to have variable effects on encapsulating different cell candidates. This study could provide guidance for cell encapsulation practices in tissue engineering and regenerative medicine research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.