In this study, segmented thermoelectric generators (TEGs) have been simulated with various state-of-the-art TE materials spanning a wide temperature range, from 300 K up to 1000 K. The results reveal that by combining the current best p-type TE materials, BiSbTe, MgAgSb, K-doped PbTeS and SnSe with the strongest n-type TE materials, Cu-Doped BiTeSe, AgPbSbTe and SiGe to build segmented legs, TE modules could achieve efficiencies of up to 17.0% and 20.9% at ΔT = 500 K and ΔT = 700 K, respectively, and a high output power densities of over 2.1 Watt cm−2 at the temperature difference of 700 K. Moreover, we demonstrate that successful segmentation requires a smooth change of compatibility factor s from one end of the TEG leg to the other, even if s values of two ends differ by more than a factor of 2. The influence of the thermal radiation, electrical and thermal contact effects have also been studied. Although considered potentially detrimental to the TEG performance, these effects, if well-regulated, do not prevent segmentation of the current best TE materials from being a prospective way to construct high performance TEGs with greatly enhanced efficiency and output power density.
Toward scalable manufacturing of perovskite solar panels, highperformance planar p−i−n perovskite solar cells (PVSCs) and modules have been demonstrated with blade coating and rapid thermal processing (RTP). The PVSCs made using RTP for less than 30 s have equivalent photovoltaic performance as devices fabricated from hot-plate annealing for 2 min. The resulting PVSCs show the best average power conversion efficiency (PCE) of over 18.47% from forward and reverse scans. Mini-modules with an active area of over 2.7 cm 2 exhibit a champion average PCE of over 17.73% without apparent hysteresis. To the best of our knowledge, these efficiencies are the highest for PVSCs processed by the combination of blade coating and RTP. Furthermore, both the blade coating and RTP were performed in an ambient environment, paving the way for the large-scale production of PVSCs through high-speed roll-to-roll printing.
In organic bulk heterojunction solar cells (OSCs) donor-acceptor vertical composition profile is one of the crucial factors that affect power-conversion efficiency (PCE). In this simulation study, five different kinds of donor-acceptor vertical configurations, including sandwich type I and type II, charge transport favorable, charge transport unfavorable, and uniform vertical distribution, have been investigated for both regular and inverted OSC structures. OSCs with uniform and charge transport favorable vertical composition profiles demonstrate the highest efficiencies. High PCE from charge transport favorable configuration can be attributed to low recombination because of facilitated charge transport in active layer and collection at electrodes, while high PCE from uniform structure is due to sufficient interfaces for efficient exciton dissociation. OSCs with sandwich and charge transport unfavorable structures show much lower efficiencies. The physical mechanisms behind simulation results are explained based on energy band diagrams, dark current-voltage characteristics, and comparison of external quantum efficiency. In conclusion, experimental optimization of vertical composition profile should be directed to either uniform or charge transport favorable vertical configurations in order to achieve high-performance OSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.