Salvianolic acid A (SalA) is one of the main efficacious, water-soluble constituents of Salvia miltiorrhiza Bunge. This study investigated the protective effects of SalA on peripheral nerve in diabetic rats. Administration of SalA (0.3, 1 and 3 mg/kg, ig) was started from the 5th week after strepotozotocin (STZ60 mg/kg) intraperitoneal injection and continued for 8 weeks. Paw withdrawal mechanical threshold (PWMT) and motor nerve conduction velocity (MNCV) were used to assess peripheral nerve function. The western blot methods were employed to test the expression levels of serine-threonine liver kinase B1 (LKB1), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α), silent information regulator protein3 (sirtuin 3/Sirt3) and neuronal nitric oxide synthase (nNOS) in sciatic nerve. Results showed that SalA administration could increase PWMT and MNCV in diabetic rats; reduce the deterioration of sciatic nerve pathology; increase AMPK phosphorylation level, up-regulate PGC-1α, Sirt3 and nNOS expression, but had no influence on LKB1. These results suggest that SalA has protective effects against diabetic neuropathy. The beneficial effects of SalA on peripheral nerve function in diabetic rats might be attributed to improvements in glucose metabolism through regulation of the AMPK-PGC1α-Sirt3 axis.
Increased production of hormone-sensitive lipase (HSL) protein has been demonstrated to be the major cause behind enhanced lipolysis in cancer cachexia. The mechanism governing this alteration is unknown and was presently investigated. This study was conducted to detect the expression of relevant receptors in the adipocytes of cancer cachexia patients, and to elucidate their implication in the increased lipolysis. Gene expressions of b1-adrenoceptor (ADRB1), b2-adrenoceptor (ADRB2), b3-adrenoceptor (ADRB3), a2C-adrenoceptor (ADRA2C), natriuretic peptide receptor A (NPRA), insulin receptor (INSR), and HSL were determined in adipose tissues of 34 patients by real-time PCR. Protein levels of ADRB1 and HSL were determined by western blot analysis. b1-Adrenoceptor (ADRB1) was also detected by immunofluorescence staining. mRNA expressions of both ADRB1 and HSL were approximately 50% elevated selectively in the cachexia group, whereas mRNA levels of the other receptors were unchanged. b1-Adrenoceptor (ADRB1) protein expression was 1.5-fold increased in cachexia as compared with the cancer controls, and 3-fold increased as compared with nonmalignant controls, and was confirmed as a membrane protein in adipocytes by immunofluorescence. Hormone-sensitive lipase (HSL) protein expression was 2-2.5-fold increased selectively in cachectic patients. There was a positive correlation between the protein expressions of ADRB1 and HSL. As much as approximately 50% of the variations in HSL protein expression could be explained by variations in ADRB1 protein expression. There was a link between ADRB1 protein level and lipolytic rate. Increased ADRB1 expression may account for some of the functional changes of HSL in patients with cancer cachexia. (Cancer Sci 2010; 101: 1639-1645 B ody fat depletion is a hallmark of cancer cachexia, a complex clinical syndrome associated with increased morbidity and mortality.(1-4) As the largest reservoir of energy stores and a major endocrine organ, white adipose tissue (WAT) plays a crucial metabolic role in regulating energy flux, plasma lipid levels, and glucose uptake. In cachectic patients, excessive fat consumption results in energy shortage and metabolic disturbances such as elevated serum levels of free fatty acids (FFAs) and glucose resistance, which interferes therapy against tumors. (5,6) Therefore, it is of value to understand the mechanisms behind fat loss in cancer cachexia. Antilipolysis treatment is especially meaningful for attenuating the progressive wasting, since fat deprivation often precedes and progresses faster than muscle atrophy in cancer cachexia. (7,8) However, fat tissue wasting is not well established in cancer cachexia, as indicated by recent consensus.(9) At present, very little is known about the factors promoting loss of adipose tissue in cancer patients. (10)(11)(12) Although decreased lipogenesis may contribute, increased lipolysis has been revealed the primary cause. (13)(14)(15)(16) In recent years, adipose lipolysis has been found to be under tight regulation b...
Aim: To investigate the effects of the novel N6-substituted adenosine derivative {(2R,3S,4R,5R)-3,4-dihydroxy-5- [6-[(4-hydroxy-3-methoxybenzyl)amino]-9H-purin-9-yl]tetrahydrofuran-2-yl} methyl decanoate (WS0701) on stress-induced excessive fear, anxiety, and cognitive deficits in a mouse model of posttraumatic stress disorder (PTSD). Methods: Male mice underwent a conditioned foot shock and single prolonged stress procedure to induce PTSD. Contextual/cued fear, elevated plus-maze, open field and novel object recognition tests were conduced to assess PTSD-like behaviors. From d 1, the mice were orally administered WS0701 (7.5, 15, or 30 mg·kg -1 ·d -1 ) or paroxetine (10 mg·kg -1 ·d -1 ) for two weeks. Apoptosis of hippocampal neurons was detected using flow cytometry and TUNEL staining, and expression of Bcl-2 and Bax in the hippocampus was measured with Western boltting and qPCR assays. Results: WS0701 administration significantly alleviated fear, anxious behaviors and memory deficits in the mouse model of PTSD. Furthermore, WS0701 administration significantly reduced the stress-induced apoptosis of hippocampal neurons, and increased the Bcl-2/Bax ratio in the hippocampus. The positive control drug paroxetine exerted similar effects on PTSD-like behaviors and hippocampal neuron apoptosis in the mouse model of PTSD, which were comparable to those caused by the high dose of WS0701. Conclusion: WS0701 effectively mitigates stress-induced PTSD-like behaviors in mice, partly via inhibition of neuronal apoptosis in the hippocampus.
This study aimed to evaluate the role of FRT in ROS/DNA regulation with or without PARP-1 in radiation-injured thymus cells. The administration of FRT to PARP-1-/- (KO) mice demonstrated that FRT significantly increased the viability of thymus cells and decreased their rate of apoptosis through PARP-1. Radiation increased the levels of ROS, γ-H2AX and 53BP1, and induced DNA double strand breaks. Compared with wild type (WT) mice, levels of ROS, γ-H2AX and 53BP1 in KO mice were much less elevated. The FRT treatment groups also showed little reduction in these indicators in KO mice compared with WT mice. The results of the KO mice study indicated that FRT reduced ROS activation through inhibition of PARP-1. Furthermore, FRT reduced the concentrations of γ-H2AX by decreasing ROS activation. However, we found that FRT did not regulate 53BP1, a marker of DNA damage, because of its elimination of ROS. Levels of apoptosis-inducing factor (AIF), exhibited no significant difference after irradiation in KO mice. To summarize, ROS suppression by PARP-1 knockout in KO mice highlights potential therapeutic target either by PARP-1 inhibition combined with radiation or by treatment with a drug therapy alone. AIF-induced apoptosis could not be activated in KO mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.