Estrogens are hypothesized to contribute to breast cancer via estrogen receptor-mediated increases in cell proliferation and via genotoxic processes leading to mutations. In this latter process, estradiol (E(2)) is thought to be oxidized to 4-hydroxyestradiol and then to E(2)-3,4-quinone, which reacts with DNA leading to apurinic sites. These sites represent premutagenic lesions. Additionally, E(2)-3,4-quinone can undergo redox cycling with E(2)-3,4-hydroquinone, leading to the release of reactive oxygen species. Although there is evidence that estradiol and E(2)-3,4-quinone are carcinogenic or mutagenic in several systems, 4-hydroxyestradiol, a key intermediate in the proposed genotoxic pathway, has thus far been negative in mutagenesis assays. Another major metabolite of estradiol, 2-hydroxyestradiol, is essentially inactive in carcinogenicity or mutagenicity assays. Here, we report that when using multiple low-dose exposures 4-hydroxyestradiol is mutagenic in the cII assay in BB rat2 cells. Under similar conditions, 2-hydroxyestradiol is inactive. Furthermore, the mutational spectrum of 4-hydroxyestradiol contains a considerable proportion of mutations at A:T base pairs, consistent with the known ability of E(2)-3,4-quinone to form a significant fraction of DNA adducts at adenines. Thus, the results of this study support the proposal that estradiol can contribute to carcinogenesis via a genotoxic pathway.
In this study, 111 Cryptosporidium parvum IId isolates from several species of animals in China, Sweden, and Egypt were subtyped by multilocus sequence typing (MLST). One to eleven subtypes were detected at each of the 12 microsatellite, minisatellite, and single nucleotide polymorphism (SNP) loci, forming 25 MLST subtypes. Host-adaptation and significant geographical segregation were both observed in the MLST subtypes. A clonal population structure was seen in C. parvum IId isolates from China and Sweden. Three ancestral lineages and the same RPGR sequence were shared by these isolates examined. Therefore, the present genetic observations including the higher nucleotide diversity of C. parvum IId GP60 sequences in Western Asia, as well as the unique distribution of IId subtypes (almost exclusively found in Asia, Europe, and Egypt) and in combination with the domestication history of cattle, sheep, and goats, indicated that C. parvum IId subtypes were probably dispersed from Western Asia to other geographical regions. More population genetic structure studies involving various C. parvum subtype families using high-resolution tools are needed to better elucidate the origin and dissemination of C. parvum in the world.
Cryptosporidium and Giardia are two important zoonotic intestinal parasites responsible for diarrhoea in humans and other animals worldwide. Rodents, as reservoirs or carriers of Cryptosporidium and Giardia, are abundant and globally widespread. In the present study, we collected 232 fecal specimens from commensal rodents captured in animal farms and farm neighbourhoods in China. We collected 33 Asian house rats, 168 brown rats and 31 house mice. 6.0% (14/232) and 8.2% (19/232) of these rodents were microscopy-positive for Giardia cysts and Cryptosporidium oocysts, respectively. All 14 Giardia isolates were identified as Giardia duodenalis assemblage G at a minimum of one or maximum of three gene loci (tpi, gdh and bg). By small subunit rRNA (SSU rRNA) gene sequencing, Cryptosporidium parvum (n = 12) and Cryptosporidium muris (n = 7) were identified. The gp60 gene encoding the 60-kDa glycoprotein was successfully amplified and sequenced in nine C. parvum isolates, all of which belonged to the IIdA15G1 subtype. Observation of the same IIdA15G1 subtype in humans (previously) and in rodents (here) suggests that rodents infected with Cryptosporidium have the potential to transmit cryptosporidiosis to humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.