Solid oxide fuel cell – internal combustion engine (SOFC-ICE) hybrid systems are an attractive solution for electricity generation. The system can achieve up to 70% theoretical electric power conversion efficiency through energy cascading enabled by utilizing the anode off-gas from the SOFC as the fuel source for the ICE. Experimental investigations were conducted with a single cylinder Cooperative Fuel Research (CFR) engine by altering fuel-air equivalence ratio (ϕ), and compression ratio (CR) to study the engine load, combustion characteristics, and emissions levels of dry SOFC anode off-gas consisting of 33.9% H2, 15.6% CO, and 50.5% CO2. The combustion efficiency of the anode off-gas was directly evaluated by measuring the engine-out CO emissions. The highest net-indicated fuel conversion efficiency of 31.3% occurred at ϕ = 0.90 and CR = 13:1. These results demonstrate that the anode off-gas can be successfully oxidized using a spark ignition combustion mode. The fuel conversion efficiency of the anode tail gas is expected to further increase in a more modern engine architecture that can achieve increased burn rates in comparison to the CFR engine. NOx emissions from the combustion of anode off-gas were minimal as the cylinder peak temperatures never exceeded 1800 K. This experimental study ultimately demonstrates the viability of an ICE to operate using an anode off-gas, thus creating a complementary role for an ICE to be paired with a SOFC in a hybrid power generation plant.
Solid oxide fuel cells (SOFCs) have been deployed in hybrid decentralized energy systems, in which they are directly coupled to internal combustion engines (ICEs). Prior research indicated that the anode tailgas exiting the SOFC stack should be additionally exploited due to its high energy value, with typical ICE operation favoring hybridization due to matching thermodynamic conditions during operation. Consequently, extensive research has been performed, in which engines are positioned downstream the SOFC subsystem, operating in several modes of combustion, with the most prevalent being homogeneous compression ignition (HCCI) and spark ignition (SI). Experiments were performed in a 3-cylinder ICE operating in the latter modus operandi, where the anode tailgas was assimilated by mixing syngas (H2: 33.9%, CO: 15.6%, CO2: 50.5%) with three different water vapor flowrates in the engine’s intake. While increased vapor content significantly undermined engine performance, brake thermal efficiency (BTE) surpassed 34% in the best case scenario, which outperformed the majority of engines operating under similar operating conditions, as determined from the conducted literature review. Nevertheless, the best performing application was identified operating under HCCI, in which diesel reformates assimilating SOFC anode tailgas, fueled a heavy duty ICE (17:1), and gross indicated thermal efficiency ([Formula: see text]) of 48.8% was achieved, with the same engine exhibiting identical performance when operating in reactivity-controlled compression ignition (RCCI). Overall, emissions in terms of NOx and CO were minimal, especially in SI engines, while unburned hydrocarbons (UHC) were non-existent due to the absence of hydrocarbons in the assessed reformates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.